
RCAT
Release 1.0

Nov 02, 2022

Contents

1 Tutorials 3

2 How-To Guides 11

3 Development 23

4 API-reference 25

5 Release notes 57

Index 59

i

ii

RCAT, Release 1.0

RCAT is an analysis tool primarily developed for analysis of regional climate models, but may also be used for global
models as well. It’s purely written in Python where we aim for a modular code in a functional style. The purpose is to
get an efficient and structured way of collaboration within our model developers but also for non pythonists that want
to use the tool for standard climate data analysis.

The tool is adapted to new demands in regional climate modeling, where the data amounts are large and analysis often
is carried out on HPC systems.

Tutorials - Start here

Instructions for new RCAT users on how to install the software and making your first plot.

How-to guides

Hands on guides with code examples.

Development

Reference

Reference material (APIs)

Contents 1

RCAT, Release 1.0

2 Contents

CHAPTER 1

Tutorials

Here you can find information on how to get started. How to install RCAT and set up configuration for your High
Performance Computing (HPC).

The more experienced user can follow short instructions in the How-To Guides for various topics.

• Installation

• RCAT Configuration

• RCAT Statistics

1.1 Installation

RCAT is a python3 based tool and the easiest way to get started is by using the Conda framework. If you don’t have
conda installed follow the installation guide from start. Otherwise you can follow from RCAT environment .

N.B. conda-forge channel need to be added in $HOME/.condarc

1.1.1 Miniconda

Install Miniconda

Add conda-forge channel

• create $HOME/.condarc file

channels:
- conda-forge
- defaults

Update conda

• conda update conda

3

https://conda.io/projects/conda/en/latest/index.html
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

RCAT, Release 1.0

1.1.2 RCAT environment

Create environment

• conda create -n rcat

Activate environment

• conda activate rcat

Install dependencies

It’s important that you follow the order of the installation list below due to a bug in the esmpy module.

• conda install esmpy

• conda install xesmf dask

• conda install netcdf4 dask-jobqueue matplotlib basemap

1.2 RCAT Configuration

The main set up is done in the <path-to-RCAT>/config/config_main.ini configuration file. In this file you will set up
paths to model data, which variables to analyze and how (define statistics), which observations to compare with etc.
In other words, this is your starting point when applying RCAT.

1. Setup folder structure If you don’t want to pollute your cloned git repository we suggest you to create a new
folder for your analysis and copy the main RCAT configuration file to the new folder.

mkdir -p $HOME/rcat_analysis/test
cd $HOME/rcat_analysis/test
cp <path-to-RCAT>/config/config_main.ini .

2. Configure settings in config_main.ini A configuration .ini file has a specific structure based on sections, prop-
erties and values. The RCAT config_main.ini file consists of a handful of these sections, for example
MODELS, under which you specify certain properties or values. The latter may in some cases be com-
mon structures used in python like lists or dictionaries. Below follows a description of each of the sections
needed to setup the analysis.

• MODELS Here you specify the path to model data. At the moment a specific folder structure is
anticipated, with sub-folders under fpath according to output frequency; fpath/day, fpath/6H,
fpath/15Min, etc. Names of these sub-folders are inherited from the freq property set under
variables in the SETTINGS section.

model = {
'fpath': '/path/to/model/data',
'grid type': 'reg', 'grid name': 'FPS-ALPS3',
'start year': 1998, 'end year': 2000, 'months': [1,2,3,4,5,6,7,8,9,

→˓10,11,12]
}

Here you also set a couple of grid specifications - namely grid type and grid name. Grid type
defines the type of grid the model data is currently on; it can be set to either rot or reg. The
former means that model data is on a rotated grid and the latter that it is on a non-rotated grid
(i.e. regular, rectilinear, curvilinear). If data is on rotated grid RCAT will de-rotate the grid.
However, it requires that model files include coordinate variables in accordance with CF conven-
tions - rlon/rlat for longitudes and latitudes as well as the variable rotated_pole with attributes
grid_north_pole_longitude and grid_north_pole_latitude. Grid name is a user defined label for

4 Chapter 1. Tutorials

RCAT, Release 1.0

the grid. If data is to be remapped to this model grid, the output filenames from RCAT analysis
will include this specified grid name.

Here’s another example comparing two models:

model_his = {
'fpath': '/path/to/model_1/data',
'grid type': 'reg', 'grid name': 'FPS-ALPS3',
'start year': 1985, 'end year': 2005, 'months': [1,2,3,4,5,6,7,8,9,

→˓10,11,12]
}
model_scn = {

'fpath': '/path/to/model_2/data',
'grid type': 'reg', 'grid name': 'FPS-ALPS3',
'start year': 2080, 'end year': 2100, 'months': [1,2,3,4,5,6,7,8,9,

→˓10,11,12]
}

Two different periods is set here because a simulation of historic period will be compared with
a simulation of future climate. More models can be added to the section, but note that the first
model (e.g. model_his in the above example) will be the reference model. That is, if validation
plot is True, and no obs data is specified, the difference plots will use the first specified model in
section as reference data.

Note: If you want to see how RCAT uses defined file paths and other informa-
tion to retrieve lists of model data files, see the get_mod_data function in <path-to-
RCAT/rcat/runtime/RCAT_main.py.

• OBS If observation data is to be used in the analysis, you will need to specify a meta data file by
setting the full path to observations_metadata_NN.py (located under <path-to-RCAT>/config).
NN is any label that signifies the observation meta data for a specific location or system (for
example a HPC system). If such a specific meta data file does not exist, it should be created
(SAMPLE_observations_metadata.py can be used as a template) and modified. N.B. Change
only the obs_data function – where observations are specified.

In addition, in this section one will specify the time period and months for obs data. The same time
period will be used for all observations. Which specific observations to include in the analysis is
not defined here, but in the SETTINGS section, in the variables property.

• SETTINGS output dir: The path for the output (statistics files, plots). If you re-run the analysis
with the same output directory, you will prompted to say whether to overwrite existing output.
“overwrite” does not mean that existing folder will be completely overwritten (deleted and created
again). The existing folder structure will be kept intact together with output files. However,
potentially some output (statistics/figure files) with same names will be overwritten.

variables: One of the key settings in the configuration file. The value of this property is repre-
sented by a dictionary; the keys are strings of variable names (‘pr’, ‘tas’, . . .) and the value of
each key (variable) is another dictionary consisting of a number of specific settings:

variables = {
'tas': {

'freq': 'day',
'units': 'K',
'scale factor': None,
'accumulated': False,
'obs': 'ERA5',

(continues on next page)

1.2. RCAT Configuration 5

RCAT, Release 1.0

(continued from previous page)

'obs scale factor': None,
'var names': {'model_1': {'prfx': 'tas', 'vname': 'var167'}},
'regrid to': 'ERA5',
'regrid method': 'bilinear'},

'psl': {
'freq': '3hr',
'units': 'hPa',
'scale factor': 0.01,
'accumulated': False,
'obs': None,
'obs scale factor': None,
'var names': None,
'regrid to': None,
'regrid method': 'bilinear'},

'pr': {
'freq': '1hr',
'units': 'mm',
'scale factor': 3600,
'accumulated': False,
'obs': 'EOBS20',
'obs scale factor': 86400,
'var names': None,
'regrid to': {'name': 'NORCP12', 'file': '/nobackup/rossby20/sm_

→˓petli/data/grids/grid_norcp_ald12.nc'},
'regrid method': 'conservative'},
}

– freq: A string of the time resolution of input model data. The string should match any of the
sub-folders under the path to model data, e.g. ‘day’, ‘1hr’, ‘3hr’. In effect, you may choose
different time resolutions for different variables in the analysis.

– units: The units of the variable data (which will appear in figures created in RCAT, and thus
should reflect the units after data have been manipulated through the analysis).

– scale factor: A numeric factor (integer/float) that model data is multiplied with, to convert to
desired units (e.g. from J/m2 to W/m2) and to ensure that all data (model and observations)
have the same units. If no scaling is to be done, set value to None. An arithmetic expression is
not allowed; for example if data is to be divided by 10 you cannot define factor as 1/10, it must
then be 0.1. It is assumed that all model data will use the same factor..

– accumulated: Boolean switch identifying variable data as accumulated fields or not. If the
former (True), then data will be de-accumulated “on the fly” when opening files of data.

– obs: String or list of strings with acronyms of observations to be included in the analy-
sis (for the variable of choice, and therefore different observations can be chosen for dif-
ferent variables). Available observations, and their acronyms, are specified in the <path-to-
RCAT>/config/observations_metadata_NN.py file. In this file you can also add new observa-
tional data sets.

– obs scale factor: As scale factor above but for observations. If multiple observations are de-
fined, some of which would need different scale factors, a list of factors can be provided.
However, if the same factor should be used for all observations, it is enough to just specify a
single factor.

– var names: Variable names specified in the top key of variables usually refers to common
names defined in CF conventions. However, there might be cases where either the variable
name specified in the file name or of the variable in the file differ from these conventions.
Var names provides an option to account for this; it is specified as a dictionary with keys prfx

6 Chapter 1. Tutorials

RCAT, Release 1.0

and vname for the file name prefix and variable name respectively. If file formats follows the
conventions, and thus have same prefix and name as the top key variable name, var names
should be set to None. See code snippet above for examples of both types of settings.

– regrid to: If data is to be remapped to a common grid, you specify either the name (model name
or observation acronym) of a model defined under MODELS section or an observation defined
under obs key. Or, if an external grid should be used, it can be set to a dictionary with the
name and file keys. name has the same purpose as grid name in the MODELS section above.
The value of file must be the full path to a netcdf file that at least contains lon and lat variables
defining the target grid. If no remapping is to be done, set regrid to to None.

– regrid method: String defining the interpolation method: ‘conservative’ or ‘bilinear’.

regions: A list of strings with region names, defining geographical areas data will be extracted
from. If set, 2D statistical fields calculated by RCAT will be cropped over these regions, and in
line plots produced in RCAT mean statistical values will calculated and plotted for each of the
regions. If the pool data option in statistics configuration (see below) is set to True, then data over
regions will be pooled together before statistical calculations. If no cropping of data is wanted,
set this property to None. Read more about how to handle regions and polygons in RCAT here.

• STATISTICS Another main section of the analysis configuration. Therefore, the description of this
segment is given separately, see RCAT Statistics

• PLOTTING This section is intended for the case you want to perform a general evaluation/validation
of the model. This means that (for the moment) a set of standards plots (maps and line plots) can
be done by RCAT for a set of standard statistical output: annual, seasonal and diurnal cycles,
pdf’s, percentiles and ASoP analysis. If plotting procedures for other statistics is wished for, they
need to be implemented in the RCAT plotting module.

validation plot: If validation plot is set to True, standard plots will be produced for the defined
statistics. Otherwise, plotting can be done elsewhere using the statistical output files (netcdf
format) created by RCAT.

map configure: In this property you can change/add key value pairs that control for example map
projection (‘proj’) and resolution (‘res’) as well as the dimensions of the map; ‘zoom’ can be set
to ‘crnrs’ if corners of model grid is to be used, or ‘geom’ if you want to specify width and height
(in meters) of the map. In the latter case you need to set ‘zoom_geom’ [width, height]. Note
that these settings refers to the reference model in the analysis which is the first model data set
specified in the MODELS section.

map configure = {'proj': 'stere', 'res': 'l', 'zoom': 'geom', 'zoom_
→˓geom': [1700000, 2100000], 'lon_0': 16.5, 'lat_0': 63}

For more settings, see the map_setup function in the plots module.

map grid setup: Settings for the map plot configuration, for example whether to use a colorbar
or not (cbar_mode) and where to put it and the padding between panels. For more info, see the
image_grid_setup function in the plots module.

map grid setup = {'axes_pad': 0.5, 'cbar_mode': 'each', 'cbar_location
→˓': 'right', 'cbar_size': '5%%', 'cbar_pad': 0.03}

map kwargs: Additional keyword arguments to be added in the matplotlib contour plot call, see
the make_map_plot function in the plotting module.

line plot settings: Likewise, settings for line plots can be made, e.g. line widths and styles as
well as axes configurations. There are a number of functions in the plotting module that handles
line/scatter/box plots, see for example the fig_grid_setup and make_line_plot functions.

1.2. RCAT Configuration 7

RCAT, Release 1.0

line grid setup = {'axes_pad': (11., 6.)}
line kwargs = {'lw': 2.5}

• CLUSTER The last section control the cluster type. You can choose between local pc and SLURM
at the moment.

cluster type: choose “local” for running on you local pc and “slurm” if you want to run RCAT on
a HPC with a SLURM job scheduler and read information below. For local pc no other settings
need to be made in this section.

SLURM RCAT uses Dask to perform file managing and statistical analysis in an efficient way
through parallelization. When applying Dask on queuing systems like PBS or Slurm, Dask-
Jobqueue provides an excellent interface for handling such work flow. It is used in RCAT
and to properly use Dask and Dask-Jobqueue on an HPC system you need to provide some
information about that system and how you plan to use it. By default, when Dask-Jobqueue is
first imported a configuration file is placed in ~/.config/dask/jobqueue.yaml. What is set in this
file are the default settings being used. On Bi/NSC we have set up a default configuration file
as below.

jobqueue:
slurm:
name: dask-worker

Dask worker options
cores: 16
memory: "64 GB"
processes: 1

interface: ib0
death-timeout: 60
local-directory: $SNIC_TMP

SLURM resource manager options
queue: null
project: null
walltime: '01:00:00'
job-extra: ['--exclusive']

When default settings have been set up, the main properties that you usually want to change in
the CLUSTER section are the number of nodes to use and wall time:

nodes = 15
slurm kwargs = {'walltime': '02:00:00', 'memory': '256GB', 'job_extra
→˓': ['-C fat']}

nodes: Sometimes you might need more memory on the nodes, and on Bi/NSC there are fat
nodes available. If you want to use fat nodes, you can specify this through

slurm kwargs = {'walltime': '02:00:00', 'memory': '256GB', 'job_extra
→˓': ['-C fat']}

3. Run RCAT

When you have done your configuration and saved config_main.ini you can start the analysis
step. The main program is located in the rcat directory and called RCAT_main.py. See point 1:
Setup folder structure and run main RCAT_main.py from your analysis folder.

8 Chapter 1. Tutorials

https://docs.dask.org/
https://dask-jobqueue.readthedocs.io
https://dask-jobqueue.readthedocs.io

RCAT, Release 1.0

python <path-to-RCAT>/rcat/runtime/RCAT_main.py -c config_main.ini

Note: Don’t forget to set $PYTHONPATH to your RCAT directory (<path-to-RCAT>).

1.3 RCAT Statistics

In the STATISTICS section in the file config_main.ini you specify the statistics to be done, in a Python dictionary
structure.

stats = {
'annual cycle': 'default',
'seasonal cycle': {'stat method': 'mean', 'thr': {'pr': 1.0}},
'percentile': {'resample resolution': ['day', 'max'], 'pctls': [90, 95, 99, 99.9]},
'pdf': {'thr': {'pr': 1.0}, 'normalized': True, 'bins': {'pr': (0, 50, 1), 'tas':

→˓(265, 290, 5)}}
'diurnal cycle': {'dcycle stat': 'amount', 'stat method': 'percentile 95'}
'moments': {'moment stat': {'pr': ['Y', 'max'], 'tas': ['D', 'mean']}},

}

The keys in stats are the statistical measures and values provides the settings/configurations to be applied to the
specific statistical calculation. The statistics that are currently available in RCAT and their default settings are given in
the RCAT Statistics <stats_control_functions> module. Some related information is also found in the API-reference
Statistics. In particular, the default_stats_config function in that module specifies the statistics possible to calculate
along with their properties. Many of the properties (or settings) are common for each of the measures, for example
resample resolution, thr or chunk dimension, while others may be specific for the kind of statistics.

If you set default as the key value in stats, as is the case for annual cycle in the code snippet above, then (obviously)
the default settings will be used. To modify the settings, the key value should be set to a dictionary containing the
particular properties to be modified as keys and values with the modified item values.

1. Common settings and properties Here we list the most common settings and give some information of them.

vars: String variable_name or list of strings [variable_name_1, variable_name_2, . . .] representing which
variables (as defined in variables under SETTINGS in the main configuration file). If set to empty list []
the calculation will be performed for all defined variables. Some statistics are specifically for a certain
variable and then this variable is set as default.

resample resolution: If you want to resample input data (model or obs) to another time resolution before
statistical computation, you can set this property to a list with two items; the first defines the temporal
resolution (e.g. 3 hours, day, month, etc) and the second the method resampling used (taking the mean or
sum for example). The xarray resample function is applied here which builds on the similar function in
the pandas package. For example, resampling to 6 hourly data, taking the sum over intervening time steps
would be defined as follows in the configuration file:

resample resolution': ['6H', 'sum']

The documentation of and available options for the resampling function can be found here (xarray) and
here (pandas) (see DateOffset Objects section for frequency string options).

chunk dimension: An important feature behind Dask parallelization is the use of blocked algorithms;
to divide the data into chunks and then run computations on each block of data in parallel (see Dask
documentation for more information). When working with multiple dimension data arrays in Dask you
can chunk the data along different dimensions, depending on what kind of calculations you may want to

1.3. RCAT Statistics 9

http://xarray.pydata.org
https://pandas.pydata.org/
http://xarray.pydata.org/en/stable/time-series.html#resampling-and-grouped-operations
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://docs.dask.org/

RCAT, Release 1.0

do. For example, when computing seasonal means of data with dimensions (time, lat, lon) it doesn’t really
matter along which dimension the data is chunked along. However, if you want to calculate time series
percentiles for each grid point then chunking should be done in space (‘lat’, ‘lon’). The chunk dimension
property has two options; time/space. For example to chunk along time, set

'chunk dimension': 'time'

pool data: Boolean switch (True/False). Set to True if statistics should be done on pooled data, i.e.
assembling all the grid points and time steps and then perform calculations. If you want the pooling
to be done over certain sub-regions, then you need to specify these in the regions property in the main
configuration file, <path-to-RCAT>/config/config_main.ini.

thr: Thresholding of data. The value of this (None is the default) should be a dictionary with keys defining
variables and values an integer of float; e.g.

'thr': {'pr': 0.1, 'tas': 273}

2. Specific settings and properties Here we list more specific settings and give some information of them.

stat method: In many of the available statistical calculations, computations can be done using various
methods or moments (e.g. mean, sum, std, etc). For example, if calculating the diurnal cycle, one could
compute the mean of all values for each time unit in the cycle or another measure such as a percentile
value. This can be specified with this property. Default value is mean. To use a percentile, set (for 95th
percentile);

'stat method': 'percentile 95'

dcycle stat: In the computation of the diurnal cycle (including harmonic fit) the dcycle stat defines whether
to compute magnitudes or frequency of occurrences. For the former set it to ‘amount’, for the latter to
‘frequency’. When calculating frequencies you must also set the ‘thr’ option, so for each unit of time in
the cycle the occurrence above this threshold is calculated.

hours (in diurnal cycle): The value of this property is a list of hours that should be used in the diurnal cycle
computation. It might be changed if you want to compare data sets with different temporal resolution (this
can also be achieved with the resample resolution option).

normalized (in pdf): Boolean switch. With normalization, the normalized contribution (by the total mean)
from each bin interval in the pdf (or frequency intensity distribution) is computed.

normalized (in Rxx): In the Rxx function (see statistics <statistics_functions> module) the counts above
the threshold is normalized by the total number of values if this property is set to True.

moment stat: The moment statistical calculation involve a basic calculation on the data, such as means,
sums or standard deviations. It is basically the same as the resample resolution property and the moment
stat is set the same way. For example, if you want to calculate the annual maximum of the input data set.

'moment stat': ['Y', 'max']

3. How do you add new statistical methods to RCAT? The code in RCAT is heavily based on xarray as well as
dask. Xarray has been interfaced closely with dask applications so much of the things that can be done in xarray,
like many (basic) statistical calculations, are already dask compliant and therefore relatively easy to implement
in RCAT. If you would like to include any new such feature, have a look in the RCAT Statistics module, for
example how the implementation of ‘seasonal cycle’ has been done.

For more elaborate statistics, using for example functions created by the user (using standard numpy/python
code), it may be a bit more complex. Xarray has a function called apply_ufunc which allows repeatedly ap-
plying a user function to xarray objects containing Dask arrays in an automatic way. See here for_some more
information.

10 Chapter 1. Tutorials

http://xarray.pydata.org/
https://docs.dask.org/
http://xarray.pydata.org/en/stable/generated/xarray.apply_ufunc.html#xarray.apply_ufunc
http://xarray.pydata.org/en/stable/computation.html#comput-wrapping-custom

CHAPTER 2

How-To Guides

The purpose of this section is to provide a new user with an overview of RCAT – an easy-to-follow guide of RCAT
applications, in order to quickly and easily get started with the tool. To this end you will find below a few rather simple
instructions or ‘recipes’ that will allow you to do some basic analysis of model output and make simple visualizations
of the results.

2.1 Preparation

To get started with the application examples it is expected that the RCAT environment has been installed. If
not, go ahead and do so before continuation. The main configuration and setup of RCAT is done in <path-to-
RCAT>/config/config_main.ini. It is therefore encouraged to read through the configuration and statistics sections
before (or along with) going through the examples below.

Note: The Use Cases (and some parts of the source code) are in a few apects very specific to the HPC system at the
National Supercomputer Centre (NSC) in Sweden; for example, available observation data sets and folder structure of
model output. In future updates of RCAT, we strive to make it more general and flexible.

2.2 Use Cases

1. The Annual and Seasonal Cycles

2. PDF’s on different time scales

3. Diurnal Variations

2.3 RCAT polygons

• How to create and plot polygons

11

RCAT, Release 1.0

2.3.1 Use Case 1: Annual & and Seasonal Cycles

In this example annual and seasonal statistics will be calculated and in most steps, changes are made in different
sections of the configuration file, <path-to-RCAT>/config/config_main.ini. It is recommended to copy this file to your
experiment folder. Detailed information of what can be configured and how can be found in RCAT Configuration.

How to calculate monthly and seasonal mean statistics?

Daily data from two models is used as input for calculation of monthly and seasonal means at each point of their
respective (native) grids. Statistical results are written to disk in netcdf files; a separate file for each model and statistic
(and sub-region if specified). No plotting is done here.

STEP 1: Data input

Under section MODELS you’ll specify the path to model data. Configure for two models – arome and aladin – using
the same time period and months. Since the annual and seasonal cycles will be calculated, all months are chosen.

arome = {
'fpath': '/nobackup/rossby21/rossby/joint_exp/norcp/NorCP_AROME_ERAI_ALADIN_1997_

→˓2017/netcdf',
'grid type': 'reg', 'grid name': 'NEU-3',
'start year': 1998, 'end year': 2002, 'months': [1,2,3,4,5,6,7,8,9,10,11,12]
}

aladin = {
'fpath': '/nobackup/rossby21/rossby/joint_exp/norcp/NorCP_ALADIN_ERAI_1997_2017/

→˓netcdf',
'grid type': 'reg', 'grid name': 'NEU-12',
'start year': 1998, 'end year': 2002, 'months': [1,2,3,4,5,6,7,8,9,10,11,12]
}

In this example we will not use any observations so no modifications are needed in the OBS section.

STEP 2: Variables

Under SETTINGS the full path to output directory should be defined. If folder doesn’t exist already it will be created
by RCAT.

output dir = /nobackup/rossby22/sm_petli/analysis/test_analysis

The key variables defines which variables to analyze along with some options regarding that particular variable. Since
only models will be analyzed here, ‘obs’ is set to None. Further, models will be kept at their respective grids, thus
‘regrid to’ is also set to None. Statistics is configured for T2m (tas) and precipitation (pr) with daily data as input
(‘freq’ set to ‘day’).

variables = {
'pr': {'freq': 'day',

'units': 'mm',
'scale factor': None,
'accumulated': True,
'obs': None,
'var names': None,
'regrid to': None},

'tas': {'freq': 'day',

(continues on next page)

12 Chapter 2. How-To Guides

RCAT, Release 1.0

(continued from previous page)

'units': 'K',
'scale factor': None,
'accumulated': False,
'obs': None,
'var names': None,
'regrid to': None},

}

regions = ['Fenno-Scandinavia']

regions is a list of pre-defined regions – see available regions in <path-to-RCAT>/rcat/utils/polygon_files folder (see
also Polygons module). Statistics will be selected for the specified sub-regions.

STEP 3: Select statistics

Under STATISTICS seasonal and annual cycles are chosen.

stats = {
'annual cycle': 'default',
'seasonal cycle': {'thr': {'pr': 1.0}},
}

The ‘default’ property means that default options for the particular statistic are used. All default options can be seen in
the default_stats_config function in RCAT Statistics. For seasonal cycle, we choose to use a threshold for precipitation
of 1.0 and so calculation is only based on wet days.

STEP 4: No plotting

Set validation plot to false – no plotting done in this example.

validation plot = False

STEP 5: Configure cluster

Under the CLUSTER section one should specify which type of cluster to use. Here, it is configured for a SLURM
cluster. nodes specify the number of nodes to be used. In cluster kwargs a number of different options can be set (here
specific for SLURM), for example walltime which is set to 2 hours.

cluster type = slurm
nodes = 10
cluster kwargs = {'walltime': '02:00:00'}

STEP 6: Run RCAT

To run the analysis run from terminal (see Run RCAT in RCAT Configuration):

python <path-to-RCAT>/rcat/runtime/RCAT_main.py -c config_main.ini

If successfully completed, output statistics netcdf files will be located in the sub-folder stats under the user-defined
output directory. An img folder is also created, however, it will be empty as no plotting have been done.

2.3. RCAT polygons 13

RCAT, Release 1.0

Adding comparison to observations and visualize results

In order to include observations and visualize the end results, follow the procedure as in the previous example with the
following changes introduced:

1. Under OBS section, choose same years and months as models

start year = 1998
end year = 2002
months = [1,2,3,4,5,6,7,8,9,10,11,12]

2. The variables property in SETTINGS section shall be modified:

• Include observations; ‘obs’: [‘EOBS20’, ‘ERA5’]. Also, scale factors are now included for
observations as well.

• Since models and observations will be compared, taking differences, the data must be on the
same grid. Therefore, set ‘regrid to’: ‘ERA5’. This means that all data will be interpolated to
the ERA5 grid. Further, the ‘regrid method’ needs to be set – bilinear for T2m and conservative
for pr.

variables = {
'pr': {'freq': 'day',

'units': 'mm',
'scale factor': None,
'accumulated': True,
'obs': ['EOBS20', 'ERA5'],
'obs scale factor': [86400, 86400],
'var names': None,
'regrid to': 'ERA5',
'regrid method': 'conservative'},

'tas': {'freq': 'day',
'units': 'K',
'scale factor': None,
'accumulated': False,
'obs': ['EOBS20', 'ERA5'],
'obs scale factor': None,
'var names': None,
'regrid to': 'ERA5',
'regrid method': 'bilinear'},

}

3. Under PLOTTING, validation plot should be set to True to enable plotting. It is possible to configure the
visualization in different ways, for example various map configurations in map plots or the looks of line plots.
However, for simplicity here, the default configurations will be used, which means setting all properties to an
empty dictionary ({}).

validation plot = True

map configure = {}
map grid setup = {}
map kwargs = {}

line grid setup = {}
line kwargs = {}

With these modifications in place, run RCAT again (STEP 6 above).

14 Chapter 2. How-To Guides

RCAT, Release 1.0

2.3.2 Use Case 2: Probability distributions

In the following RCAT is applied to calculate standard empirical probability distribution functions. Similar to Use
Case 1 most changes will be done in the configuration file, <path-to-RCAT>/config/config_main.ini.

Create hourly PDF statistics and visualize the results

In the first example PDF’s based on hourly data for historical and scenario simulations will be calculated for precipi-
tation and T2m. Output statistics are then compared in line plots for specified regions.

STEP 1: Data input

Under MODELS section configure for two arome simulations – historic (arome_his) and future scenario (arome_scn).
Thus, different years are specified, however, in the example here months 6,7,8 are specified so that only data for June,
July and August is extracted.

arome_his = {
'fpath': '/nobackup/rossby21/rossby/joint_exp/norcp/NorCP_AROME_ECE_ALADIN_1985_

→˓2005/netcdf',
'grid type': 'reg', 'grid name': 'NEU-3',
'start year': 1990, 'end year': 1994, 'months': [6,7,8]
}

arome_scn = {
'fpath': '/nobackup/rossby21/rossby/joint_exp/norcp/NorCP_AROME_ECE_ALADIN_RCP85_

→˓2080_2100/netcdf',
'grid type': 'reg', 'grid name': 'NEU-3',
'start year': 2090, 'end year': 2094, 'months': [6,7,8]
}

We’re looking at climate change signal in the model, so the OBS section can be left as is.

STEP 2: Variables

Set output directory under the SETTINGS section.

The key variables defines which variables to analyze along with some options regarding that particular variable. Since
only models will be analyzed here, obs is set to None. Further, models will be kept at their respective grids, thus regrid
to is also set to None. Statistics is configured for T2m (tas) and precipitation (pr) with hourly data as input (freq set to
1H).

Specify regions the regions key for which statistics will be selected for.

output dir = /nobackup/rossby22/sm_petli/analysis/test_pdf_analysis

variables = {
'pr': {'freq': '1H',

'units': 'mm',
'scale factor': None,
'accumulated': True,
'obs': None,
'var names': None,
'regrid to': None},

'tas': {'freq': '1H',
'units': 'K',

(continues on next page)

2.3. RCAT polygons 15

RCAT, Release 1.0

(continued from previous page)

'scale factor': None,
'accumulated': False,
'obs': None,
'var names': None,
'regrid to': None},

}

regions = ['Scandinavia']

STEP 3: Select statistics

Under STATISTICS pdf will be specified. A list of bins will be used in the pdf. If not given here these bins will be
defined automatically in RCAT by taking minimum and maximum of input data. This can be quite crude and not so
representative, so it is suggested to define them here under the pdf key. They are specified in a dictionary where the
keys are input variables and the values are the respective bin definitions. The bin definition is a list/tuple with start,
stop and step values. For example, for precpitation a list of bins starting with 0 and ending with 50 using a step of 1 is
defined here.

stats = {
'pdf': {'bins': {'pr': (0, 50, 1), 'tas': (264, 312, 1)}}
}

See the default_stats_config function in RCAT Statistics module for the default options for pdf.

STEP 4: Plotting

• Under PLOTTING, validation plot should be set to True to enable plotting. Plotting of pdf’s will be line plots
only (regions should therefore be specified). We only specify linewidths to be 2.5.

validation plot = True

map configure = {}
map grid setup = {}
map kwargs = {}

line grid setup = {}
line kwargs = {'lw': 2.5}

STEP 5: Configure cluster

The number of nodes to be used in the selected SLURM cluster is set to 20 (increase if needed) and a walltime of 2
hours.

cluster type = slurm
nodes = 20
cluster kwargs = {'walltime': '02:00:00'}

STEP 6: Run RCAT

To run the analysis run from terminal (see Run RCAT in RCAT Configuration):

16 Chapter 2. How-To Guides

RCAT, Release 1.0

python <path-to-RCAT>/rcat/runtime/RCAT_main.py -c config_main.ini

Output statistics files will be located in the sub-folder stats under the user-defined output directory.

Calculate PDF’s for daily maximum values instead

Imagine one would like to do the same kind of statistical analysis as above, however, with a different temporal res-
olution and/or time statistic on the input data. For example, let’s assume that pdf’s should be calculated for daily
maxmimum data instead. How can this be achieved?

This can be done during RCAT runtime, using an option in the stats property (under SETTINGS) called resample
resolution. It is specified by a list/tuple with two locations; the first index represents the time resolution sought after
and the second location the statistic used for each sample in the resampling. In the example here data is resampled
into daily maximum values:

stats = {
'pdf': {'bins': {'pr': (0, 50, 1), 'tas': (264, 312, 1)}, 'resample resolution': [

→˓'D', 'max']}
}

When set, run RCAT again.

2.3.3 Use Case 3: Diurnal Cycles

One main advantage of RCAT is that it can run analyses of large data sets through the use of parallelization (using the
dask module). In principle it involves splitting the data into several “chunks” (in the space and/or time dimensions)
and then run a set of operations on each of the chunk in parallel. Read more about it on dask homepage.

Depending on the analysis you want to run on your data, you might consider chunking your data differently. If, for
example, you would like to calculate a quantile value for the data over all time steps then you should do the chunking
in space only so that each chunk has all time steps available. Here, RCAT will be applied to calculate diurnal cycles
of some model output using different statistical measures and how the splitting/chunking of data matters.

Similar to Use Case 1 most changes will be done in the configuration file, <path-to-RCAT>/config/config_main.ini.

Calculate diurnal cycles of mean CAPE and plot the results

STEP 1: Data input

Under section MODELS specify the path to model data and set start and end years as well as months to analyze.

arome = {
'fpath': '/nobackup/rossby21/rossby/joint_exp/norcp/NorCP_AROME_ERAI_ALADIN_1997_

→˓2017/netcdf',
'grid type': 'reg', 'grid name': 'NEU-3',
'start year': 1998, 'end year': 2002, 'months': [5,6,7,8,9]
}

aladin = {
'fpath': '/nobackup/rossby21/rossby/joint_exp/norcp/NorCP_ALADIN_ERAI_1997_2017/

→˓netcdf',
'grid type': 'reg', 'grid name': 'NEU-12',
'start year': 1998, 'end year': 2002, 'months': [5,6,7,8,9]
}

2.3. RCAT polygons 17

https://dask.org/

RCAT, Release 1.0

If you would like to include observations as well, set accordingly in the OBS section.

STEP 2: Variables

Set output directory under the SETTINGS section.

In the key variables we specify in this example pcape (a specific model version of CAPE) available on 3 hourly time
resolution. If only models will be analyzed set ‘obs’ to None. ‘regrid to’ is set to the coarser grid of the two models
and data is interpolated using the bilinear method.

Specify region(s) in the regions key for which statistics will be selected, and finally plotted, for.

output dir = /nobackup/rossby22/sm_petli/analysis/test_dcycle_analysis

variables = {
'pcape': {'freq': '3H',

'units': 'J/kg',
'scale factor': None,
'accumulated': False,
'obs': None,
'var names': None,
'regrid to': 'aladin',
'regrid method': 'bilinear'},

}

regions = ['Sweden', 'Denmark', 'Norway', 'Finland']

STEP 3: Select statistics

The statistics, diurnal cycle, is specified under the stats key in the STATISTICS section. Default options for diurnal
cycle is found in the default_stats_config function in RCAT Statistics. In default settings, hours is set to all 24 hours in
a day. Since the data here is on 3 hourly resolution we specify these hours. The stat method (the statistical measure)
for each hour is mean in default and it is kept here, and the data is chunked in the time dimension (also default so not
specified here).

stats = {
'diurnal cycle': {'hours': [0, 3, 6, 9, 12, 15, 18, 21]}
}

STEP 4: Plotting

Under PLOTTING, validation plot should be set to True to enable plotting. Plotting of diurnal cycles will be both
maps (for each hour) and line plots for specified regions.

validation plot = True

map configure = {}
map grid setup = {}
map kwargs = {}

line grid setup = {}
line kwargs = {'lw': 2.5}

18 Chapter 2. How-To Guides

RCAT, Release 1.0

STEP 5: Configure cluster

The number of nodes to be used in the selected SLURM cluster is set to 10 (increase if needed) and a walltime of 2
hours.

cluster type = slurm
nodes = 10
cluster kwargs = {'walltime': '02:00:00'}

STEP 6: Run RCAT

To run the analysis run from terminal (see Run RCAT in RCAT Configuration):

python <path-to-RCAT>/rcat/runtime/RCAT_main.py -c config_main.ini

Output statistics and image files will be located under the user-defined output directory in the stats and imgs sub-folders
respectively

Calculate diurnal cycles of 99th percentile CAPE values

Instead of the mean value for each hour in the diurnal cycle (at any grid point in the domain) it could be meaningful
to use another statistical measure, for example the 99th percentile. To do this, in addition to changing the stat method
value, one will need to have all time steps available for the calculation and thus the chunk dimension should be changed
from ‘time’ (default) to ‘space’:

stats = {
'diurnal cycle': {'hours': [0, 3, 6, 9, 12, 15, 18, 21], 'stat method':

→˓'percentile 99', 'chunk dimension': 'space'}
}

When set, run RCAT again.

2.3.4 Polygons in RCAT

– How to plot them and create new ones

Polygons are used in RCAT to extract or select data and statistics for specified sub-regions or areas. These con-
sist of text files containing information of latitudes and longitudes for the area and are stored under <path-to-
RCAT>/rcat/utils/polygon_files/. The Polygons module use these polygons to do the extraction (with the mask_region
function) and it also has a number of different help functions to create new polygons (for use in RCAT or elsewhere)
and plot them conveniently.

The following tutorial will describe some of this functionality along with a few examples.

Plot a polygon

The Polygons module has a function called plot_polygon which allows you to plot one of the existing polygons on
map. There are a couple of ways to apply the function – either from within python (or in a script) where the module is
imported and plotting function calls can be made, or the function call can be made directly from command line:

2.3. RCAT polygons 19

RCAT, Release 1.0

>> import rcat.utils.polygons as pg
>> pg.plot_polygon?
Signature: pg.plot_polygon(polygon, savefig=False, figpath=None)
Docstring:
Plot polygon on map.

Parameters

polygon: string or list

Name of polygon as defined by poly_dict dictionary in 'polygons'
function, or list with polygon coordinates [[lon1, lat1], [lon2, lat2],
..., [lon1, lat1]].

savefig: boolean
If True, figure is saved to 'figpath' location ('figpath' must be set!).
If false, figure is displayed on screen.

figpath: string
Path to folder for saved polygon figure.

The plot_polygon function takes a polygon name as input chosen from the collection of existing polygons in <path-
to-RCAT>/rcat/utils/polygon_files/. [Note that the polygon name is the text file name without ‘.txt’ and underscores
replaced by white space.] Also new polygons can be plotted if providing a list with polygon coordinates (not possible
when executing function from command line!). The keyword arguments allows to save the polygon plot, if not it is
just displayed.

If you do not know which polygons are available, you can easily print them:

>> pg.polygons(poly_print=True)

Available polygons/regions:

Alps
Black Sea
British Isles
Central Europe
Denmark
East Europe
Fenno-Scandinavia
Finland
France
Germany
Iberian peninsula
Mediterranean Sea
Netherlands
Norway
South-East Europe
Spain
Sweden
Switzerland
United Kingdom
West Europe

To plot the polygon of British Isles:

>> pg.plot_polygon('British Isles')

This function call can be made directly from the command line. Run the <path-to-RCAT>/rcat/utils/polygons.py script
(make sure it is executable) providing appropriate arguments:

20 Chapter 2. How-To Guides

RCAT, Release 1.0

./polygons.py --help

./polygons.py -p plot -a "British Isles" --save True --figpath $HOME

Create a new polygon

New regions/polygons can be created using the create_polygon function, either from within python or from the com-
mand line. The call involves a set of instructions where the user is continuously prompted for information and actions.

From command line:

./polygons.py -p create

The creation part is made by clicking pointer on a displayed map. If you want to save selected polygon to RCAT, make
sure to provide correct folder path and an appropriate polygon name. Once saved it will automatically be ready for
RCAT – check for example by printing available polygons:

./polygons.py -p printareas

2.3. RCAT polygons 21

RCAT, Release 1.0

22 Chapter 2. How-To Guides

CHAPTER 3

Development

RCAT is written and maintained mainly by Petter Lind and David Lindstedt for analysis of high resolution regional
climate output. It’s now an open source project and as such, anyone is welcome to contribute. Please look through the
page on how to do improve the software.

3.1 Contribution guidelines

• PEP 8

• Modular

• Writing tests

• Code review

23

RCAT, Release 1.0

24 Chapter 3. Development

CHAPTER 4

API-reference

4.1 User API

4.1.1 Visualization

Color routines

The routines below provides access to predefined (Matplotlib) or self-produced colors and color maps.

rcat.plot.colors.
getcolormap(cmap_name[, custom])

Function to retrieve colormap, either customized (cus-
tom=True) or available through Matplotlib predefined
colormaps.

rcat.plot.colors.
getsinglecolor(color_name)

Function to retrieve single custom color.

rcat.plot.colors.norm_colors(bounds,
ncolors)

In addition to min and max of levels, this function takes
as arguments boundaries between which data is to be
mapped.

rcat.plot.colors.getcolormap

rcat.plot.colors.getcolormap(cmap_name, custom=False)
Function to retrieve colormap, either customized (custom=True) or available through Matplotlib predefined
colormaps.

Parameters

• cmap_name (string) – String, giving name of colormap to be retrieved.

• custom (Boolean) – Logical indicating self-produced (custom=True) or Matplotlib col-
ormap.

Returns cmap

25

RCAT, Release 1.0

Return type Matplotlib colormap object

rcat.plot.colors.getsinglecolor

rcat.plot.colors.getsinglecolor(color_name)
Function to retrieve single custom color.

Parameters color_name (string) – String, giving name of color to be retrieved.

Returns color

Return type Matplotlib color object

rcat.plot.colors.norm_colors

rcat.plot.colors.norm_colors(bounds, ncolors, clip=False)
In addition to min and max of levels, this function takes as arguments boundaries between which data is to be
mapped. The colors are then linearly distributed between these ‘bounds’.

Graphic routines

Functions for different plots such as scatterplots and mapplots,initiation and configuration of figure objects etc

rcat.plot.plots.figure_init([plottype,
. . .])

Setting up a figure object

rcat.plot.plots.
image_grid_setup([figsize, . . .])

Set up the plot axes using
mpl_toolkits.axes_grid1.ImageGrid Used primarily
when plotting maps or for image analysis For more
information on available settings: https://doc.ebichu.cc/
matplotlib/mpl_toolkits/axes_grid1/overview.html

rcat.plot.plots.get_nrow_ncol(npanels) Return number of rows and columns from a given total
no of panels for a grid

rcat.plot.plots.fig_grid_setup([figsize,
. . .])

Set up the plot axes using pyplot.subplots

rcat.plot.plots.axes_settings(ax[, . . .]) Configuration of axes; titles and labels
rcat.plot.plots.map_axes_settings(fig,
axs)

Settings for map plot axes

rcat.plot.plots.make_scatter_plot(grid,
. . .)

Create a scatter plot

rcat.plot.plots.make_raster_plot(data[,
. . .])

Create a raster plot

rcat.plot.plots.make_line_plot(grid,
ydata)

Create a line plot

rcat.plot.plots.make_box_plot(grid, data[,
. . .])

Create a box plot

rcat.plot.plots.custom_legend(colors, la-
bels)

Creates a list of matplotlib Patch objects that can be
passed to the legend(. . .) function to create a custom
legend.

rcat.plot.plots.gen_clevels(data, nsteps[,
. . .])

Create contour levels based on min and max of input
data

Continued on next page

26 Chapter 4. API-reference

https://doc.ebichu.cc/matplotlib/mpl_toolkits/axes_grid1/overview.html
https://doc.ebichu.cc/matplotlib/mpl_toolkits/axes_grid1/overview.html

RCAT, Release 1.0

Table 2 – continued from previous page
rcat.plot.plots.map_setup(grid, lats, lons) Create a basemap object to be used in the overlaying of

2d plots.
rcat.plot.plots.make_map_plot(data[, grid,
. . .])

Producing map plots

rcat.plot.plots.plot_map(m, x, y, data, . . .) Producing a map plot
rcat.plot.plots.image_colorbar(cs,
cbaxs[, . . .])

Add colobar to map plot

rcat.plot.plots.figure_init

rcat.plot.plots.figure_init(plottype=’line’, printtypes=False)
Setting up a figure object

Parameters

• plottype (string) – Type of plot to make

• printtypes (boolean) – If available plottypes should be printed on screen

rcat.plot.plots.image_grid_setup

rcat.plot.plots.image_grid_setup(figsize=(12, 12), fshape=(1, 1), **grid_kwargs)
Set up the plot axes using mpl_toolkits.axes_grid1.ImageGrid Used primarily when plotting maps or for image
analysis For more information on available settings: https://doc.ebichu.cc/matplotlib/mpl_toolkits/axes_grid1/
overview.html

Parameters

• figsize (tuple) – Size of figure in inches; (width, height)

• fshape (tuple) – setting the shape of figure (nrow, ncol)

• **grid_kwargs (Additional keyword arguments) –

Returns

• fig (Figure object)

• grid (AxesGrid object)

Examples of **kwargs with default values: direction=”row”, axes_pad=0.02, add_all=True,
share_all=False, label_mode=”L”, aspect=True, cbar_mode=None, cbar_location=”right”,
cbar_size=”5%”, cbar_pad=None,

rcat.plot.plots.get_nrow_ncol

rcat.plot.plots.get_nrow_ncol(npanels)
Return number of rows and columns from a given total no of panels for a grid

rcat.plot.plots.fig_grid_setup

rcat.plot.plots.fig_grid_setup(figsize=(12, 12), fshape=(1, 1), direction=’row’,
axes_pad=(None, None), **grid_kwargs)

Set up the plot axes using pyplot.subplots

4.1. User API 27

https://doc.ebichu.cc/matplotlib/mpl_toolkits/axes_grid1/overview.html
https://doc.ebichu.cc/matplotlib/mpl_toolkits/axes_grid1/overview.html

RCAT, Release 1.0

Parameters

• figsize (tuple) – Size of figure in inches; (width, height)

• fshape (tuple) – setting the shape of figure (nrow, ncol)

• direction (string) – ‘row’ or ‘col’; rowwise or columnwise order of axes instances

• axes_pad (tuple) – padding (height,width) between edges of adjacent subplots

• **grid_kwargs (Additional keyword arguments) –

Returns

• fig (Figure object)

• grid (List with axes instances)

rcat.plot.plots.axes_settings

rcat.plot.plots.axes_settings(ax, figtitle=None, xlabel=None, ylabel=None, xtlabels=None, yt-
labels=None, xticks=None, yticks=None, xlim=None, ylim=None,
color=’k’, fontsize=’xx-large’, fontsize_lbls=’xx-large’,
fontsize_title=’xx-large’, ftitle_location=’center’)

Configuration of axes; titles and labels

Parameters

• ax (axes object) – Axes object assoicated with figure

• figtitle (string) – The headtitle

• ylabel (xlabel,) – Labels of the axes

• yticks (xticks,) – If set, location of ticks

• ytlabels (xtlabels,) – Contains tick labels (corresponding to ticks location)

• ylim (xlim,) – Limits of the axes

• color (str) – Color for the xtick labels

• fontsize/fontsize_lbls/fontsize_title (string or int) – Size of font
for axes labels, ticklabels, and figure title respectively

• ftitle_location (str) – Horizontal alignment of figure title; center (default), right
or left.

rcat.plot.plots.map_axes_settings

rcat.plot.plots.map_axes_settings(fig, axs, figtitle=None, headtitle=None, time_mean=None,
time_units=None, fontsize=’x-large’, fontsize_htitle=’xx-
large’)

Settings for map plot axes

Parameters

• fig (Object handle) – Figure handle

• axs (Axes objects) – Single object or list with axes from map plot

• figtitle (Strings) – Single title or list of titles for each plot in figure

• headtitle (String) – Head title of figure

28 Chapter 4. API-reference

RCAT, Release 1.0

• time_mean (string) – If maps should be labeled according to time averages; ‘sea-
son’/’month’/’hour’

• time_units (list/array) – Optional. If time_mean is set, time_units is a list of
seasons, months or hours to be used in the labeling.

• fontsize (string or int) – Size of font for figure title

• fontsize_htitle (string or int) – Size of font for suptitle

rcat.plot.plots.make_scatter_plot

rcat.plot.plots.make_scatter_plot(grid, xdata, ydata, sdata=None, fcolors=None, ecol-
ors=None, lbl_fontsize=’large’, axis_type=’linear’, la-
bels=None, **sc_kwargs)

Create a scatter plot

Parameters

• grid (AxesGrid object) – returned from the ‘fig_grid_setup’ function

• xdata/ydata (Array/list) – 1D array or list of 1D arrays with data for x/y axis

• fcolors (array/list) – List of colors to be used for each data set in input data. This is
separate from ‘color’/’c’ option available from matplotlib.scatter call (and set in sc_kwargs)
where all individual input data sets will have that specific color/s. If set, then ecolors need
also be supplied.

• ecolors (array/list) – List of edge colors to be used for each data set in input data.
This is separate from ‘edgecolors’/’ec’ option available from matplotlib.scatter call (and set
in sc_kwargs) where all individual input data sets will have that specific color/s. If set, then
fcolors need also be supplied.

• lbl_fontsize (string/float) – Fontsize for legend labels

• axis_type (str) – Linear or log axes: ‘linear’ (defualt), ‘logx’/’logy’/’logxy’ (log x, y
or both axes).

• labels (String/List) – String or list of strings with legend labels

• **sc_kwargs (keyword arguments) – arguments (key=value) that can be used in
pyplot.scatter See matplotlib.org for more information

Returns axs – The axes objects created for each plot

Return type Axes objects

rcat.plot.plots.make_raster_plot

rcat.plot.plots.make_raster_plot(data, grid=None, clevs=None, norm=None, cmap=’viridis’,
**rs_kwargs)

Create a raster plot

Parameters

• grid (AxesGrid object) – returned from the ‘image_grid_setup’ function

• data (List) – List with 2D array(s) of data

• cmap (string/list) – String or list with strings of predefined Matplotlib colormaps.
Defaults to ‘viridis’

4.1. User API 29

RCAT, Release 1.0

• clevs (Iterable data structure) – Consisting of lists with defined contour lev-
els; e.g. (np.arange(1,10,2), [0,2,4,6,8]), [np.arange(100,step=5)]*3

• norm (BoundaryNorm object) – Object generated from mat-
plotlib.colors.BoundaryNorm function. Generate a colormap index based on discrete
intervals.

• **rs_kwargs (keyword arguments) – arguments (key=value) that can be used in
pyplot.imshow See matplotlib.org for more information

Returns

• axs (Axes objects) – The axes objects created for each plot

• rasters (Plot objects) – The raster plot objects created for each plot

rcat.plot.plots.make_line_plot

rcat.plot.plots.make_line_plot(grid, ydata, xdata=None, labels=None, lbl_fontsize=’x-large’,
axis_type=’linear’, **lp_kwargs)

Create a line plot

Parameters

• grid (Axis object) – returned from the ‘fig_grid_setup’ function

• ydata (array/list) – Required. 1D array or list of 1D arrays with data for y axis

• xdata (array/list) – Optional. 1D array or list of 1D arrays with data for x axis

• labels (string/list) – String or list of strings with line labels

• lbl_fontsize (string/float) – Fontsize for legend labels

• axis_type (str) – Linear or log axes: ‘linear’ (defualt), ‘logx’/’logy’/’logxy’ (log x, y
or both axes).

• **lp_kwargs (keyword arguments) – arguments (key=value) that can be used in
pyplot.line See matplotlib.org for more information

Returns axs – The axes objects created for each plot

Return type Axes objects

rcat.plot.plots.make_box_plot

rcat.plot.plots.make_box_plot(grid, data, labels=None, leg_labels=None, grouped=False,
box_colors=None, **box_kwargs)

Create a box plot

Parameters

• grid (AxesGrid object) – returned from the ‘fig_grid_setup’ function

• data (List/Array) – 1d array or list of 1d arrays with data for boxplot one box.

• labels (str/list) – String or a list of strings with xtick labels (for each box/group of
boxes)

• leg_labels (str/list) – String or a list of strings with legend labels (mostly used for
grouped boxplots).

30 Chapter 4. API-reference

RCAT, Release 1.0

• grouped (boolean) – Whether to plot grouped boxplot. If True, input data must be a
dictionary. See _grouped_boxplot function for more info.

• box_colors (array/list) – Optional list of colors to be used for the boxes.

• **box_kwargs (keyword arguments) – arguments (key=value) that can be used in
pyplot.boxplot See matplotlib.org for more information

Returns

• axs (list) – Axes objects for each plot

• bps (list) – Each item in list is a dictionary mapping each component of the boxplot to a list
of the .Line2D instances created.

rcat.plot.plots.custom_legend

rcat.plot.plots.custom_legend(colors, labels, linestyles=None)
Creates a list of matplotlib Patch objects that can be passed to the legend(. . .) function to create a custom legend.

Parameters

• colors (list) – A list of colors, one for each entry in the legend. You can also include a
linestyle, for example: ‘k–’

• labels (list) – A list of labels, one for each entry in the legend.

rcat.plot.plots.gen_clevels

rcat.plot.plots.gen_clevels(data, nsteps, robust=None)
Create contour levels based on min and max of input data

Parameters

• data (array) – data array

• nsteps (int) – number of levels to be produced

• robust (None or string) – If to soften the max/min limits due to extreme values;
“top”/”bottom”/”both”, which end(s) to soften.

rcat.plot.plots.map_setup

rcat.plot.plots.map_setup(grid, lats, lons, proj=’stere’, lon_0=None, lat_0=None, lat_1=None,
res=’l’, zoom=’crnrs’, crnr_vals=None, zoom_geom=[None, None],
**mkwargs)

Create a basemap object to be used in the overlaying of 2d plots.

Parameters

• grid (list) – List with axes objects for each plot in figure

• lats (array(s)) – array or list of arrays with latitudes

• lons (array(s)) – array or list of arrays with longitudes

• proj (string) – the projection to be used (so far only two proj’s: sterographic and lam-
bert conformal)

• lat_0/lon_0 (float) – centre latitude and longitude location of map

4.1. User API 31

RCAT, Release 1.0

• lat_1 (float) – first standard parallell. if proj=’lcc’, lat_1 must be given.

• res (string) – resolution (low ‘l’, intermediate ‘i’ or high ‘h’)

• zoom (string) – “cornrs” or “geom”, how to set the extent of map

• crnr_vals (1D list/array) – List of values for corners given as [llcrnrlat, llcrnrlon,
urcrnrlat, urcrnrlon]

• zoom_geom (1D list/array) – Integers setting map geometry [width, height] in me-
ters.

• **mkwargs (key word arguments) – Additional arguments provided to Basemap
call. See http://matplotlib.org/basemap/# for more info.

Returns

• m (Basemap object) – map object

• coords (list) – list containing x,y arrays of the transformed longitudes to map coordinates

rcat.plot.plots.make_map_plot

rcat.plot.plots.make_map_plot(data, grid=None, map_obj=None, coords=None, lats=None,
lons=None, cmap=None, clevs=None, robust=None, norm=None,
mesh=False, filled=True, **map_kwargs)

Producing map plots

Parameters

• data (array/list/tuple) – Array or list/tuple of 2D data array(s) to plot

• grid (AxesGrid object) – returned from the ‘image_grid_setup’ function If not pro-
vided it is generated using number of data arrays as input.

• map_obj (tuple) – List with Basemap objects returned from ‘map_setup’ function. If
not provided, it is generated within this function.

• coords (tuple) – List with arrays of map coordinates; returned from ‘map_setup’ func-
tion

• lons (lats,) – If map_obj is not provided, latitudes and longitudes need to be provided
to setup a Basemap object.

• cmap (string/list) – String or list with strings of predefined Matplotlib colormaps.
For filled contour plots it defaults to ‘viridis’.

• clevs (Iterable data structure) – Consisting of lists with defined contour lev-
els; e.g. (np.arange(1,10,2), [0,2,4,6,8]), [np.arange(100,step=5)]*3

• robust (string) – See gen_clevs function for info

• norm (BoundaryNorm object) – Object generated from mat-
plotlib.colors.BoundaryNorm function. Generate a colormap index based on discrete
intervals.

• mesh (boolean) – Whether to plot data as mesh. If false (default), contour plot is made.

• filled (boolean) – Whether to color fill between contours or not. Defaults to True

• **map_kwargs (keyword arguments) – arguments (key=value) that can be used in
pyplot.contour(f) See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contour

Returns mplots – List with map plot instances

32 Chapter 4. API-reference

http://matplotlib.org/basemap
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contour

RCAT, Release 1.0

Return type List

rcat.plot.plots.plot_map

rcat.plot.plots.plot_map(m, x, y, data, clevs, cmap, norm, mesh, filled, **map_kwargs)
Producing a map plot

Parameters

• m (Basemap object) – Handle for the map object returned from ‘map_setup’ function

• data (numpy array) – 2D data array to plot

• x,y (numpy arrays) – Arrays of map coordinates; returned from ‘map_setup’ function

• clevs (List/array) – Contour levels

• cmap (string) – Color map. See http://matplotlib.org/users/colormaps.html for more
information.

• norm (Boundary norm object) – Normalize data to [0,1] to use for mapping colors

• mesh (boolean) – Whether to plot data as mesh. If false (default), contour plot is made.

• filled (Boolean) – Whether to color fill between contours or not. Defaults to True

• **map_kwargs (keyword arguments) – arguments (key=value) that can be used in
pyplot.contour(f) See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contour

Returns cs

Return type Contour plot object

rcat.plot.plots.image_colorbar

rcat.plot.plots.image_colorbar(cs, cbaxs, title=None, labelspacing=1, labelsize=’x-large’, for-
matter=’{:.2f}’, **cbar_kwargs)

Add colobar to map plot

Parameters

• cs (Plot object) – Such as an image (imshow) or a contour set (with contourf)

• cbaxs (cbar axis object/list) – Colorbar axis object or list with axes objects for
each plot in figure

• title (list) – list of strings with colorbar titles

• labelspacing (int) – Label spacing; the integer value represents the number of steps
between each label. 1 show each label (default), 2 every second, etc.

• labelsize (str/int) – Size of labels; integer value or a string (e.g. ‘large’)

• **cbar_kwargs (keyword arguments) – arguments (key=value) that can be used in
pyplot.colobar See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.colorbar

4.1.2 Statistics

Arithmetic routines

Functions for various arithmetic calculations.

4.1. User API 33

http://matplotlib.org/users/colormaps.html
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.contour
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.colorbar

RCAT, Release 1.0

rcat.stats.arithmetics.run_mean(x, N[,
mode])

Calculate running mean

rcat.stats.arithmetics.run_mean

rcat.stats.arithmetics.run_mean(x, N, mode=’valid’)
Calculate running mean

Return running mean of data vector x where N is the window size. mode key word argument describes how the
edges should be handled. See numpy.convolve for more information.

ASoP

Analyzing Scales of Precipitation.

rcat.stats.ASoP.asop(data[, keepdims, axis,
. . .])

Calculate ASoP parameters.

rcat.stats.ASoP.bins_calc(n[, bintype]) Calculates bins with edges according to Eq.

rcat.stats.ASoP.asop

rcat.stats.ASoP.asop(data, keepdims=False, axis=0, bins=None, thr=None, return_bins=False)
Calculate ASoP parameters.

Parameters

• data (array) – 2D or 1D array of data. All data points are collectively used in the
asop calculation unless ‘keepdims’ is True. Then calculation is performed along zeroth axis
(expected time dimension).

• keepdims (boolean) – If data is 2d (time in third dimesion) and keepdims is set to True,
calculation is applied to the dimension defined by axis argument (default 0) and returns a
2d array of asop components. If set to False (default) all values are collectively assembled
before calculation.

• axis (int) – The axis over which to apply the calculation if keepdims is set to True.
Default is 0.

• bins (list/array) – Defines the bin edges, including the rightmost edge, allowing for
non-uniform bin widths. If bins is set to ‘None’ they will be automatically calculated using
Klingaman bins; function bins_calc in this module.

• thr (float) – Value of threshold if thresholding data. Default None.

• return_bins (boolean) – If set to True (default False), bins that have been used in the
calculation are returned.

Returns

• Cfactor (array) – data array with relative contribution per bin to the total mean.

• FCfactor (array) – data array with relative contribution per bin independent of the total
mean.

• bins_ret (array) – If return_bins is True, the array of bin edges is returned.

34 Chapter 4. API-reference

RCAT, Release 1.0

rcat.stats.ASoP.bins_calc

rcat.stats.ASoP.bins_calc(n, bintype=’Klingaman’)
Calculates bins with edges according to Eq. 1 in Klingaman et al. (2017); https://www.geosci-model-dev.net/
10/57/2017/

Parameters

• n (array/list) – 1D array or list with bin numbers

• bintype (str) – The type of bins to be calculated; ‘Klingaman’ (see reference) or ‘expo-
nential’ for exponential bins.

Returns bn – 1D array of bin edges

Return type array

Bootstrapping

Routines for bootstrap calculations.

rcat.stats.bootstrap.
block_bootstr(data[, . . .])

Calculate block bootstrap samples.

rcat.stats.bootstrap.block_bootstr

rcat.stats.bootstrap.block_bootstr(data, block=5, nrep=500, nproc=1)
Calculate block bootstrap samples.

This is a block boostrap function, converted from R into python, based on: http://stat.wharton.upenn.edu/~buja/
STAT-541/time-series-bootstrap.R

Parameters

• data (list/array) – 1D data array on which to perform the block bootstrap.

• block (int) – the block length to be used. Default is 5.

• nrep (int) – the number of resamples produced in the bootstrap. Default is 500.

• nproc (int) – Number of processors, default 1. If larger than 1, multiple processors are
used in parallell using the multiprocessing module.

Returns arrBt – 2D array with bootstrap samples; rows are the samples, columns the values.

Return type Array

Climate indices

Routines for various climate index calculations.

rcat.stats.climateindex.
hotdays_calc(data, . . .)

Calculate number of hotdays.

rcat.stats.climateindex.
extr_hotdays_calc(. . .)

Calculate number of extreme hotdays.

Continued on next page

4.1. User API 35

https://www.geosci-model-dev.net/10/57/2017/
https://www.geosci-model-dev.net/10/57/2017/
http://stat.wharton.upenn.edu/~buja/STAT-541/time-series-bootstrap.R
http://stat.wharton.upenn.edu/~buja/STAT-541/time-series-bootstrap.R

RCAT, Release 1.0

Table 6 – continued from previous page
rcat.stats.climateindex.
tropnights_calc(data)

Calculate number of tropical nights.

rcat.stats.climateindex.ehi(data, thr_95[,
. . .])

Calculate Excessive Heat Index (EHI).

rcat.stats.climateindex.cdd_calc
rcat.stats.climateindex.Rxx(data[, thr,
. . .])

Rxx mm, count of any time units (days, hours, etc)
when precipitation xx mm: Let RRij be the precipi-
tation amount on time unit i in period j.

rcat.stats.climateindex.RRpX(data, per-
centile)

RRpX mm, total amount of precipitation above the per-
centile threshold pX; RR pX mm: Let RRij be the daily
precipitation amount on day i in period j.

rcat.stats.climateindex.RRtX(data, thr[,
. . .])

RRtX mm, total amount of precipitation above the
threshold ‘thr’.

rcat.stats.climateindex.SDII(data[, thr,
. . .])

SDII, Simple pricipitation intensity index: Let RRwj
be the daily precipitation amount on wet days, w (RR
1mm) in period j.

rcat.stats.climateindex.hotdays_calc

rcat.stats.climateindex.hotdays_calc(data, thr_p75)
Calculate number of hotdays.

Return days with mean temperature above the 75th percentile of climatology.

Parameters

• data (array) – 1D-array of temperature input timeseries

• thr_p75 (float) – 75th percentile daily mean value from climatology

rcat.stats.climateindex.extr_hotdays_calc

rcat.stats.climateindex.extr_hotdays_calc(data, thr_p95)
Calculate number of extreme hotdays.

Return days with mean temperature above the 95th percentile of climatology.

Parameters

• data (array) – 1D-array of temperature input timeseries

• thr_p95 (float) – 95th percentile daily mean value from climatology

rcat.stats.climateindex.tropnights_calc

rcat.stats.climateindex.tropnights_calc(data)
Calculate number of tropical nights.

Return days with minimum temperature not below 20 degrees C.

Parameters data (array) – 1D-array of minimum temperatures timeseries in degrees Kelvin

36 Chapter 4. API-reference

RCAT, Release 1.0

rcat.stats.climateindex.ehi

rcat.stats.climateindex.ehi(data, thr_95, axis=0, keepdims=False)
Calculate Excessive Heat Index (EHI).

Parameters

• data (list/array) – 1D/2D array of daily temperature timeseries

• thr_95 (float) – 95th percentile daily mean value from climatology

• axis (int) – The axis along which the calculation is applied (default 0).

• keepdims (boolean) – If data is 2d (time in third dimesion) and keepdims is set to True,
calculation is applied to the zeroth axis (time) and returns a 2d array of calculated statistics.
If set to False (default) all values are collectively assembled before calculation.

Returns EHI – Excessive heat index

Return type float

rcat.stats.climateindex.Rxx

rcat.stats.climateindex.Rxx(data, thr=1.0, axis=0, normalize=False, keepdims=False)
Rxx mm, count of any time units (days, hours, etc) when precipitation xx mm: Let RRij be the precipitation
amount on time unit i in period j. Count the number of days where RRij xx mm.

Parameters

• data (array) – 1D/2D data array, with time steps on the zeroth axis (axis=0).

• thr (float/int) – Threshold to be used; eg 10 for R10, 20 R20 etc. Default 1.0.

• axis (int) – Along which axis to calculate Rxx. Defaults to 0

• normalize (boolean) – If True (default False) the counts are normalized by total num-
ber of time units in each array/grid point. Returned values will then be fractions.

• keepdims (boolean) – If False (default) calculation is performed on all data collectively,
otherwise for each timeseries on each point in 2d space. ‘Axis’ then defines along which
axis the timeseries are located.

Returns Rxx – 1D/2D array with calculated Rxx indices.

Return type list/array

rcat.stats.climateindex.RRpX

rcat.stats.climateindex.RRpX(data, percentile, thr=None, axis=0, keepdims=False)
RRpX mm, total amount of precipitation above the percentile threshold pX; RR pX mm: Let RRij be the daily
precipitation amount on day i in period j. Sum the precipitation for all days where RRij pX mm.

Parameters

• data (array) – 1D/2D data array, with time steps on the zeroth axis (axis=0).

• percentile (int) – Percentile that defines the threshold.

• thr (float/int) – Pre-thresholding of data to do calculation for wet days/hours only.

4.1. User API 37

RCAT, Release 1.0

• keepdims (boolean) – If False (default) calculation is performed on all data collectively,
otherwise for each timeseries on each point in 2d space. ‘Axis’ then defines along which
axis the timeseries are located.

Returns RRpx – 1D/2D array with calculated RRpXX indices.

Return type list/array

rcat.stats.climateindex.RRtX

rcat.stats.climateindex.RRtX(data, thr, axis=0, keepdims=False)
RRtX mm, total amount of precipitation above the threshold ‘thr’.

Parameters

• data (array) – 1D/2D data array, with time steps on the zeroth axis (axis=0).

• thr (int) – Threshold that defines the threshold above which data is summed.

• keepdims (boolean) – If False (default) calculation is performed on all data collectively,
otherwise for each timeseries on each point in 2d space. ‘Axis’ then defines along which
axis the timeseries are located.

Returns RRtx – 1D/2D array with calculated RRtXX indices.

Return type list/array

rcat.stats.climateindex.SDII

rcat.stats.climateindex.SDII(data, thr=1.0, axis=0, keepdims=False)
SDII, Simple pricipitation intensity index: Let RRwj be the daily precipitation amount on wet days, w (RR
1mm) in period j.

Parameters

• data (list/array) – 2D array.

• thr (float/int) – threshold for wet events (wet days/hours etc)

• axis (int) – The axis along which the calculation is applied (default 0).

• keepdims (boolean) – If data is 2d (time in third dimesion) and keepdims is set to True,
calculation is applied to the zeroth axis (time) and returns a 2d array of freq-int dists. If set
to False (default) all values are collectively assembled before calculation.

Convolution

This module includes functions to perform convolution, for example image smoothing, using scipy’s convolution
routines.

rcat.stats.convolve.kernel_gen(n[, ktype,
kfun])

Function to create a kernel, i.e.

rcat.stats.convolve.convolve2Dfunc
rcat.stats.convolve.fft_prep(array, ker-
nel, . . .)

Prepare data array and kernel for fft computation.

Continued on next page

38 Chapter 4. API-reference

RCAT, Release 1.0

Table 7 – continued from previous page
rcat.stats.convolve.convolve_fft(array,
kernel)

Convolve an ndarray with an nd-kernel.

rcat.stats.convolve.kernel_gen

rcat.stats.convolve.kernel_gen(n, ktype=’square’, kfun=’mean’)
Function to create a kernel, i.e. a moving window (box or disk) with side/radius equal to ‘n’.

Parameters

• n (int) – Side/radius of square/disk of smoothening window.

• ktype (string) – The type of box; ‘square’ (default) or ‘disk’.

• kfun (string) – The function ‘kfun’ applied to each sub-sample within the moving win-
dow. Either ‘mean’ (default) or ‘sum’.

rcat.stats.convolve.fft_prep

rcat.stats.convolve.fft_prep(array, kernel, fill_value, boundary=’fill’, psf_pad=False,
fft_pad=True)

Prepare data array and kernel for fft computation.

Parameters

• boundary ({'fill', 'wrap'}, optional) – A flag indicating how to handle
boundaries:

– ’fill’: set values outside the array boundary to fill_value (default)

– ’wrap’: periodic boundary

• fft_pad (bool, optional) – Default on. Zero-pad image to the nearest 2^n

• psf_pad (bool, optional) – Default off. Zero-pad image to be at least the sum of
the image sizes (in order to avoid edge-wrapping when smoothing)

rcat.stats.convolve.convolve_fft

rcat.stats.convolve.convolve_fft(array, kernel, boundary=’fill’, fill_value=0, crop=True,
return_fft=False, fft_pad=True, psf_pad=False, interpo-
late_nan=False, quiet=False, ignore_edge_zeros=False,
min_wt=0.0, normalize_kernel=False, allow_huge=True,
fftn=<function fftn>, ifftn=<function ifftn>)

Convolve an ndarray with an nd-kernel. Returns a convolved image with shape = array.shape. Assumes kernel
is centered.

convolve_fft differs from scipy.signal.fftconvolve in a few ways:

• It can treat NaN values as zeros or interpolate over them.

• inf values are treated as NaN

• (optionally) It pads to the nearest 2^n size to improve FFT speed.

• Its only valid mode is ‘same’ (i.e. the same shape array is returned)

4.1. User API 39

RCAT, Release 1.0

• It lets you use your own fft, e.g., pyFFTW <http://pypi.python.org/pypi/pyFFTW> or pyFFTW3
<http://pypi.python.org/pypi/PyFFTW3/0.2.1>, which can lead to performance improvements, depend-
ing on your system configuration. pyFFTW3 is threaded, and therefore may yield significant performance
benefits on multi-core machines at the cost of greater memory requirements. Specify the fftn and ifftn
keywords to override the default, which is numpy.fft.fft and numpy.fft.ifft.

Parameters

• array (numpy.ndarray) – Array to be convolved with kernel

• kernel (numpy.ndarray) – Will be normalized if normalize_kernel is set. Assumed
to be centered (i.e., shifts may result if your kernel is asymmetric)

• boundary ({'fill', 'wrap'}, optional) – A flag indicating how to handle
boundaries: * ‘fill’: set values outside the array boundary to fill_value (default) * ‘wrap’:
periodic boundary

• interpolate_nan (bool, optional) – The convolution will be re-weighted assum-
ing NaN values are meant to be ignored, not treated as zero. If this is off, all NaN values will
be treated as zero.

• ignore_edge_zeros (bool, optional) – Ignore the zero-pad-created zeros. This
will effectively decrease the kernel area on the edges but will not re-normalize the kernel.
This parameter may result in ‘edge-brightening’ effects if you’re using a normalized kernel

• min_wt (float, optional) – If ignoring NaN / zeros, force all grid points with a
weight less than this value to NaN (the weight of a grid point with no ignored neighbors
is 1.0). If min_wt is zero, then all zero-weight points will be set to zero instead of NaN
(which they would be otherwise, because 1/0 = nan). See the examples below

• normalize_kernel (function or boolean, optional) – If specified, this is
the function to divide kernel by to normalize it. e.g., normalize_kernel=np.sum
means that kernel will be modified to be: kernel = kernel / np.sum(kernel).
If True, defaults to normalize_kernel = np.sum.

Other Parameters

• fft_pad (bool, optional) – Default on. Zero-pad image to the nearest 2^n

• psf_pad (bool, optional) – Default off. Zero-pad image to be at least the sum of the image
sizes (in order to avoid edge-wrapping when smoothing)

• crop (bool, optional) – Default on. Return an image of the size of the largest input image.
If the images are asymmetric in opposite directions, will return the largest image in both
directions. For example, if an input image has shape [100,3] but a kernel with shape [6,6] is
used, the output will be [100,6].

• return_fft (bool, optional) – Return the fft(image)*fft(kernel) instead of the convolution
(which is ifft(fft(image)*fft(kernel))). Useful for making PSDs.

• fftn, ifftn (functions, optional) – The fft and inverse fft functions. Can be overridden to use
your own ffts, e.g. an fftw3 wrapper or scipy’s fftn, e.g. fftn=scipy.fftpack.fftn

• complex_dtype (np.complex, optional) – Which complex dtype to use. numpy has a range
of options, from 64 to 256.

• quiet (bool, optional) – Silence warning message about NaN interpolation

• allow_huge (bool, optional) – Allow huge arrays in the FFT? If False, will raise an excep-
tion if the array or kernel size is >1 GB

40 Chapter 4. API-reference

RCAT, Release 1.0

Raises ValueError: – If the array is bigger than 1 GB after padding, will raise this exception unless
allow_huge is True

See also:

convolve() Convolve is a non-fft version of this code. It is more memory efficient and for small kernels can
be faster.

Returns default – array convolved with kernel. If return_fft is set, returns fft(array) *
fft(kernel). If crop is not set, returns the image, but with the fft-padded size instead of the
input size

Return type ndarray

Probability distributions

rcat.stats.pdf.freq_int_dist(data[, . . .]) Calculate frequency - instensity distriutions.
rcat.stats.pdf.prob_of_exceed(data[, . . .]) Calculates probability of exceedance distriutions.
rcat.stats.pdf.perkins_skill_score(p_mod,
p_obs)

Calculate the Perkins Skill Score (PSS).

rcat.stats.pdf.freq_int_dist

rcat.stats.pdf.freq_int_dist(data, keepdims=False, axis=0, bins=10, thr=None, density=True,
ci=False, bootstrap=False, nmc=500, block=1, ci_level=95,
nproc=1)

Calculate frequency - instensity distriutions.

Parameters

• data (array) – 2D or 1D array of data. All data points are collectively used in the freq-
instensity calculation unless ‘keepdims’ is True. Then calculation is performed along the
dimension defined by axis argument (default 0).

• keepdims (boolean) – If data is 2d (time in third dimesion) and keepdims is set to True,
calculation is applied to the dimension defined by axis argument (default 0) and returns a 2d
array of freq-int dists. If set to False (default) all values are collectively assembled before
calculation.

• axis (int) – The axis over which to apply the calculation if keepdims is set to True.
Default is 0.

• bins (int/list/array) – If an int, it defines the number of equal-width bins in the
given range (10, by default). If a sequence, it defines the bin edges, including the rightmost
edge, allowing for non-uniform bin widths. If bins is set to ‘None’ they will be automatically
calculated.

• thr (float) – Value of threshold if thresholding data. Default None.

• density (boolean) – If True (default) then the value of the probability density function
at each bin is returned, otherwise the number of samples per bin.

• bootstrap (boolean) – If to use block bootstrap to calculate confidence interval.

• nmc (int/float) – Number of bootstrap samples to use.

• block (int/float) – Size of block to use in block bootstrap

4.1. User API 41

RCAT, Release 1.0

• ci_level (int/float) – The confidence interval level to use (eg 95, 99 representing
95%, 99% levels)

• nproc (int) – Number of processes to use in bootstrap calculation. Default 1.

Returns

• pdf (array) – data array with size len(bins)-1 with counts/probabilities

• ci (dict) – data dictionary with confidence level for each bin; keys ‘min_levels’/’max_levels’
with corresponding values. If bootstrap is False, then None values are returned.

rcat.stats.pdf.prob_of_exceed

rcat.stats.pdf.prob_of_exceed(data, keepdims=False, axis=0, thr=None, pctls_levels=None)
Calculates probability of exceedance distriutions.

Parameters

• data (array) – 2D or 1D array of data. All data points are collectively used in the freq-
instensity calculation unless ‘keepdims’ is True. Then calculation is performed along zeroth
axis.

• pctls_levels ('default', None or array/list) – If set to ‘default’, prob-
ability levels of exceedance are defined by a set of percentiles ranging from 0-100 and
calculated from input data. If an array or list, these levels (between 0 and 100) will be used
instead. Default is None in which case input data is merely ranked from 0 to 1.

• keepdims (boolean) – If data is 2d (time in third dimesion) and keepdims is set to True,
calculation is applied to the zeroth axis (time) and returns a 2d array of freq-int dists. If set
to False (default) all values are collectively assembled before calculation.

• axis (int) – The axis over which to apply the calculation if keepdims is set to True.
Default is 0.

• thr (float) – Value of threshold if thresholding data. Default None.

Returns eop – exceedance of probability array.

Return type array

rcat.stats.pdf.perkins_skill_score

rcat.stats.pdf.perkins_skill_score(p_mod, p_obs, axis=0)
Calculate the Perkins Skill Score (PSS).

Parameters

• p_obs (p_mod,) – 1d or 2d arrays with frequency of values (probability) in a given bin
from the model and observations respectively. Make sure that the sum of probabilities over
all the bins should be equal to one. This depends on how the pdf was calculated. Bins with
unity width gives total prob of one.

• axis (int) – If data is 2d, the PSS will be calculated along this axis. Default axis is zero.

Returns pss – Returns Perkins Skill Score, single float or array with floats.

Return type float/array

42 Chapter 4. API-reference

RCAT, Release 1.0

SAL module

Routines for calculation of SAL statistics.

rcat.stats.sal.A_stat(data, refdata) Calculate the amplitude component (A).
rcat.stats.sal.S_stat(data, data_label, . . .) Function to calculate the structure component (S).
rcat.stats.sal.L_stat(data, data_label, . . .) Function to determine the location component (L).
rcat.stats.sal.threshold(data, thr_type,
value)

Function to calculate the threshold to be used to identify
objects.

rcat.stats.sal.distfunc(x) Calculate distances
rcat.stats.sal.remove_large_objects(. . .) Remove large objects based on the maximum size limit

defined by ‘max_size’.
rcat.stats.sal.sal_calc(tstep, data, . . . [,
. . .])

Perform the SAL calculation using the S, A, L func-
tions.

rcat.stats.sal.write_to_disk(ddict, nt,
. . .)
rcat.stats.sal.run_sal_analysis(data,
. . . [, . . .])

Run the SAL analysis on the two data sets ‘data’ and
‘refdata’, where the latter is supposed to represent the
‘truth’.

rcat.stats.sal.A_stat

rcat.stats.sal.A_stat(data, refdata)
Calculate the amplitude component (A).

Parameters refdata (data,) – 2D data arrays to be compared, where refdata is the reference
data e.g. observations.

Returns A – The calculated amplitude component

Return type float

rcat.stats.sal.S_stat

rcat.stats.sal.S_stat(data, data_label, refdata, refdata_label, obj_prop=True, lsmask=None)
Function to calculate the structure component (S). The basic idea is to compare the volume of the normalized
precipitation objects. This property captures information of the geometrical characteristics (size and shape) and
how they differ between model (M) and reference (O).

Parameters

• refdata (data,) – 2D data arrays to be compared, where refdata is the reference data
e.g. observations.

• refdata_label (data_label,) – Arrays with labeled objects. Returned from the
label() function.

• obj_prop (boolean) – If True, individual object (rain fall area) properties are calculated
and returned.

• lsmask (array) – Land/sea mask (2d boolean array) to characterize identified objects as
land, ocean or coastal objects.

Returns

• S (float) – The calculated structure component.

4.1. User API 43

RCAT, Release 1.0

• area_props/ref_area_props (dictionary) – Dictionary containing properties of identified
objects in data and refdata respectively.

rcat.stats.sal.L_stat

rcat.stats.sal.L_stat(data, data_label, refdata, refdata_label)
Function to determine the location component (L). It consists of two components, L1 and L2. L1: measures the
normalized distance between the centers of mass of the modelled and observed fields. L2: The second considers
the averaged distance between the center of mass of the total field and individual field objects.

Parameters

• refdata (data,) – 2D data arrays to be compared, where refdata is the reference data
e.g. observations.

• refdata_label (data_label,) – Arrays with labeled objects. Returned from the
label() function.

Returns L1, L2, L – Dictionary with the calculated location components L1 and L2 as well as its
composite L (L1 + L2).

Return type dictionary

rcat.stats.sal.threshold

rcat.stats.sal.threshold(data, thr_type, value)
Function to calculate the threshold to be used to identify objects.

Parameters

• data (array) – 2D data array.

• thr_type (string) – Type of threshold. Can be either “S” for specified (any absolute
value), “F” for a fraction (between 0 and 1) of the maximum value, and “P” for a percentile
(95 for the 95th percentile etc).

• value (int/float) – The corresponding value based on the chosen threhold type.

rcat.stats.sal.distfunc

rcat.stats.sal.distfunc(x)
Calculate distances

rcat.stats.sal.remove_large_objects

rcat.stats.sal.remove_large_objects(segments, max_size)
Remove large objects based on the maximum size limit defined by ‘max_size’.

Parameters

• segments (array) – Array with labeled objects. Returned from the label() function.

• max_size (int) – Maximum size (number of grid points)

Returns out – The segments array with too large objects removed.

Return type array

44 Chapter 4. API-reference

RCAT, Release 1.0

rcat.stats.sal.sal_calc

rcat.stats.sal.sal_calc(tstep, data, refdata, thr_t, thr_v, obj_prop=True, olsl=None, ousl=None,
smlvl=None, land_sea_mask=None)

Perform the SAL calculation using the S, A, L functions.

rcat.stats.sal.write_to_disk

rcat.stats.sal.write_to_disk(ddict, nt, fname, attrs)

rcat.stats.sal.run_sal_analysis

rcat.stats.sal.run_sal_analysis(data, refdata, thr_type, thr_val, obj_prop=True,
obj_lower_size_limit=None, obj_upper_size_limit=None,
smoothening_data_level=None, land_sea_mask=None,
write_to_file=False, filename=None, nproc=1)

Run the SAL analysis on the two data sets ‘data’ and ‘refdata’, where the latter is supposed to represent the
‘truth’.

Parameters

• data/refdata (arrays) – 2D data arrays with zeroth dimension representing time
steps. Both data sets must have the same dimension sizes, i.e. both in time and space.

• thr_type (string) – Type of threshold to use. See ‘threshold’ function for more infor-
mation.

• thr_val (float/int) – Value of threshold.

• obj_prop (boolean) – If True (default), a number of object area properties are returned
for each of the identified objects. See ‘S_stat’ function for more information.

• obj_lower_size_limit (int) – If set, all objects with an area (number of connected
grid points) lower than the value set is removed from analysis.

• obj_upper_size_limit (int) – If set, all objects with an area (number of connected
grid points) greater than the value set is removed from analysis.

• smoothening_data_level (int) – If set, the number represents the # of grid points
of the side of a moving window used to smooth the data arrays. Mean value within window
is calculated.

• land_sea_mask (array/None) – If set, land_sea_mask must be a 2d boolean array
with same dimension as input data. The land/sea-mask is then used to identify objects as
either land (1), ocean (0) or coastal (2) in the object properties dictionary. Thus, mask only
used if obj_prop=True. N.B. Mask must have True for ocean points and False for land
points.

• write_to_file (boolean) – Whether to write results to disk.

• filename (str) – Name of file for writing to disk.

• nproc (int) – Number of processors to use in calculation. If larger than 1 (default), the
multiprocessing module is used to distribute the calculation in the time dimension.

Returns

• out_dict (dictionary) – Dictionary with calculated SAL statistics and area properties (if
obj_prop is set to True).

4.1. User API 45

RCAT, Release 1.0

• nc (file) – If ‘write_to_file’ is True, results are written to disk in a netcdf file.

4.1.3 Utilities

Atmospheric physics

Routines for calculations of various physical properties

rcat.utils.atmosphys.rh2sh(rh, T[, P]) Convert relative humidity to specific humidity Code
from: https://github.com/PecanProject/pecan/blob/
master/modules/data.atmosphere/R/metutils.R Equa-
tion for sh from standard literature, e.g.

rcat.utils.atmosphys.td2sh(Td, P) Convert dew point temperature to specific humid-
ity https://github.com/PecanProject/pecan/blob/master/
modules/data.atmosphere/R/metutils.R

rcat.utils.atmosphys.sh2td(sh, p) Returns dew point temperature (K) at mixing ratio sh
(kg/kg) and pressure p (Pa).

rcat.utils.atmosphys.es
rcat.utils.atmosphys.e
rcat.utils.atmosphys.td(e) Returns dew point temperature (C) at vapor pressure e

(Pa) Insert Td in 2.17 in Rogers&Yau and solve for Td
rcat.utils.atmosphys.wind2uv(ws, wd[,
dir_unit])

Converts wind speed and direction to u and v compo-
nents.

rcat.utils.atmosphys.uv2wind(u, v) Converts u and v components to wind speed and direc-
tion.

rcat.utils.atmosphys.
calc_vaisala(ddict, . . .)

Calculate Brunt-Vaisala frequency in layer bounded by
two pressure levels.

rcat.utils.atmosphys.rh2sh

rcat.utils.atmosphys.rh2sh(rh, T, P=1013.25)
Convert relative humidity to specific humidity Code from: https://github.com/PecanProject/pecan/blob/master/
modules/data.atmosphere/R/metutils.R Equation for sh from standard literature, e.g. K. Emanuel (1994; eq.
4.1.4) Reference: * Emanuel, K. A. (1994): Atmospheric Convection. New York, NY:

Oxford University Press, 580 pp.

Parameters

• float/array of floats (P,) – Relative humidity in proportion, not percent

• float/array of floats – Absolute temperature in Kelvin

• float/array of floats – Pressure in hPa (mb)

Returns Specific humidity in kg/kg

Return type sh,

rcat.utils.atmosphys.td2sh

rcat.utils.atmosphys.td2sh(Td, P)
Convert dew point temperature to specific humidity https://github.com/PecanProject/pecan/blob/master/

46 Chapter 4. API-reference

https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R
https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R
https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R
https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R
https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R
https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R
https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R
https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R

RCAT, Release 1.0

modules/data.atmosphere/R/metutils.R

Parameters

• float/array of floats (P,) – Absolute dew point temperature in Kelvin

• float/array of floats – Pressure in mb

Returns Specific humidity in g/kg

Return type p, float/array of floats

rcat.utils.atmosphys.sh2td

rcat.utils.atmosphys.sh2td(sh, p)
Returns dew point temperature (K) at mixing ratio sh (kg/kg) and pressure p (Pa). Insert Td in 2.17 in
Rogers&Yau and solve for Td

rcat.utils.atmosphys.td

rcat.utils.atmosphys.td(e)
Returns dew point temperature (C) at vapor pressure e (Pa) Insert Td in 2.17 in Rogers&Yau and solve for Td

rcat.utils.atmosphys.wind2uv

rcat.utils.atmosphys.wind2uv(ws, wd, dir_unit=’rad’)
Converts wind speed and direction to u and v components.

Parameters

• float/array of floats (wd,) – Wind speed data

• float/array of floats – Wind direction data

• string (dir_deg,) – Units of the wind direction data; ‘rad’ (default) or ‘deg’.

Returns u and v wind components

Return type (u, v), floats/arrays of floats

rcat.utils.atmosphys.uv2wind

rcat.utils.atmosphys.uv2wind(u, v)
Converts u and v components to wind speed and direction.

Parameters

• float/array of floats (v,) – east/west wind component

• float/array of floats – north/south wind component

Returns wind speed and wind direction respectively.

Return type (ws, wd), floats/arrays of floats

4.1. User API 47

https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R
https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R

RCAT, Release 1.0

rcat.utils.atmosphys.calc_vaisala

rcat.utils.atmosphys.calc_vaisala(ddict, model, lower_plevel, upper_plevel)
Calculate Brunt-Vaisala frequency in layer bounded by two pressure levels. Pressure must be given in hPa,
temperature (T) in Kelvin and specific humidity (q) in kg/kg.

Parameters

• ddict (dictionary) – Data dictionary

• model (str) – model data to use

• lower_plevel (float) – lower pressure surface

• upper_plevel (float) – upper pressure surface

Returns N2 – The squared Brunt-Vaisala frequency

Return type array with floats

IO handling

This module provides routines representing tools to read and write NetCDF files.

rcat.utils.file_io.ncdump(nc_fid[, verb]) ncdump outputs dimensions, variables and their at-
tribute information.

rcat.utils.file_io.openFile(filename) Function to open netcdf file.
rcat.utils.file_io.getDimensions(nc[,
close])

Function to retrieve the dimensions of a netcdf file nc:
Netcdf object opened with function “openFile” close:
set True if you want the file to be closed after retrieval.

rcat.utils.file_io.getParams(nc, params[,
close])

Function to retrieve variables from a netcdf file nc:
Netcdf object opened with function “openFile” params:
A list of strings with the parameters to be retrieved
close: set True if you want the file to be closed after
retrieval.

rcat.utils.file_io.
fracday2datetime(tdata)

Takes an array of dates given in %Y%m%d.%f format
and returns a corresponding datetime object

rcat.utils.file_io.
write2netcdf(filename, . . .)

Opens a new NetCDF file to write the input data to.

rcat.utils.file_io.ncdump

rcat.utils.file_io.ncdump(nc_fid, verb=True)
ncdump outputs dimensions, variables and their attribute information. The information is similar to that of
NCAR’s ncdump utility. ncdump requires a valid instance of Dataset.

Parameters

• nc_fid (netCDF4.Dataset) – A netCDF4 dateset object

• verb (Boolean) – whether or not nc_attrs, nc_dims, and nc_vars are printed

Returns

• nc_attrs (list) – A Python list of the NetCDF file global attributes

• nc_dims (list) – A Python list of the NetCDF file dimensions

48 Chapter 4. API-reference

RCAT, Release 1.0

• nc_vars (list) – A Python list of the NetCDF file variables

rcat.utils.file_io.openFile

rcat.utils.file_io.openFile(filename)
Function to open netcdf file. filename: string with full path to file

rcat.utils.file_io.getDimensions

rcat.utils.file_io.getDimensions(nc, close=False)
Function to retrieve the dimensions of a netcdf file nc: Netcdf object opened with function “openFile” close: set
True if you want the file to be closed after retrieval. Returns lons and lats, time as well as gridsize Nx,Ny

rcat.utils.file_io.getParams

rcat.utils.file_io.getParams(nc, params, close=False)
Function to retrieve variables from a netcdf file nc: Netcdf object opened with function “openFile” params: A
list of strings with the parameters to be retrieved close: set True if you want the file to be closed after retrieval.
Returns a list with the given parameters.

rcat.utils.file_io.fracday2datetime

rcat.utils.file_io.fracday2datetime(tdata)
Takes an array of dates given in %Y%m%d.%f format and returns a corresponding datetime object

rcat.utils.file_io.write2netcdf

rcat.utils.file_io.write2netcdf(filename, filedir, dim, variables, global_attr=None,
nc_format=’NETCDF4’, compress=False, complevel=4)

Opens a new NetCDF file to write the input data to. For nc_format, you can choose from
‘NETCDF3_CLASSIC’, ‘NETCDF3_64BIT’, ‘NETCDF4_CLASSIC’, and ‘NETCDF4’ (default)

Parameters

• filename (str) – name of netcdf file to write to

• filedir (str) – directory path to put the file

• dim (dict) – dimensions to be used

• variables (dict) – variables with their values and attributes

• global_attr (dict) – global attributes (optional)

• nc_format (str) – Specify netCDF format

• compress (boolean) – Whether to compress (using ‘zlib=True’ in the write call).

• complevel (int) – An integer between 1-9 representing the degree of compression to be
used.

The dictionaries should be structured as described by the examples below:

dims_dict = {} dims_dict[‘x’] = 154 dims_dict[‘y’] = 192 dims_dict[‘nv’] = 4 dims_dict[‘time’] = None

4.1. User API 49

RCAT, Release 1.0

vars_dict = {} vars_dict = {‘lon’: {‘values’: lons, ‘dims’: (‘y’, ‘x’),

‘attributes’: {‘long_name’: ‘longitude’, ‘standard_name’: ‘longitude’, ‘units’: ‘de-
grees_east’, ‘_CoordinateAxisType’: ‘Lon’}},

‘lat’: {‘values’: lats, ‘dims’: (‘y’, ‘x’),

‘attributes’: {‘long_name’: ‘latitude’, ‘standard_name’: ‘latitude’, ‘units’: ‘degrees_north’,
‘_CoordinateAxisType’: ‘Lat’}},

‘pr’: {‘values’: pr, ‘dims’: (‘time’, ‘y’, ‘x’),

‘attributes’: {‘long_name’: ‘precipitation’,

‘standard_name’: ‘precipitation flux’, ‘units’: ‘kg m-2 s-1’, ‘coordinates’: ‘lon lat’,
‘_FillValue’: -9999.}}}

glob_attr = {‘description’: ‘some description of file’, ‘history’: ‘Created ‘ + time.ctime(time.time()), ‘exper-
iment’: ‘Fractions Skill Score analysis’, ‘contact’: ‘petter.lind@smhi.se’, ‘references’: ‘http://journals.
ametsoc.org/doi/abs/ 10.1175/2007MWR2123.1’}

Grid applications

Routines to remap data given source and target grids.

rcat.utils.grids.fnCellCorners(rgrLon,
rgrLat)

File name: fnCellBoundaries Author: Andreas Prein E-
mail: prein@ucar.edu Date created: 20.03.2015 Date
last modified: 20.03.2015

rcat.utils.grids.calc_vertices(lons,
lats[, . . .])

Estimate the cell boundaries from the cell location of
regular grids

rcat.utils.grids.
fnRemapConOperator(rgrLonS, . . .)

File name: fnRemapConOperator Author: Andreas
Prein E-mail: prein@ucar.edu Date created: 26.05.2017
Date last modified: 26.05.2017

rcat.utils.grids.fnRemapCon(rgrLonS, . . .) File name: fnRemapCon Author: Andreas Prein E-
mail: prein@ucar.edu Date created: 13.06.2017 Date
last modified: 13.06.2017

rcat.utils.grids.
add_matrix_NaNs(regridder)

Replace zero values of cells in the new grid that are out-
side the old grid’s domain with NaN’s.

rcat.utils.grids.fnCellCorners

rcat.utils.grids.fnCellCorners(rgrLon, rgrLat)
File name: fnCellBoundaries Author: Andreas Prein E-mail: prein@ucar.edu Date created: 20.03.2015 Date
last modified: 20.03.2015

Estimate the cell boundaries from the cell location of regular grids

returns: rgrLonBND & rgrLatBND –> arrays of dimension [nlon,nlat] containing the cell boundaries of each
gridcell in rgrlon and rgrlat

rcat.utils.grids.calc_vertices

rcat.utils.grids.calc_vertices(lons, lats, write_to_file=False, filename=None)
Estimate the cell boundaries from the cell location of regular grids

50 Chapter 4. API-reference

mailto:'petter.lind@smhi.se
http://journals.ametsoc.org/doi/abs/
http://journals.ametsoc.org/doi/abs/
mailto:prein@ucar.edu
mailto:prein@ucar.edu
mailto:prein@ucar.edu
mailto:prein@ucar.edu

RCAT, Release 1.0

Parameters

• lats (lons,) – Longitude and latitude values

• write_to_file (bool) – If True lat/lon information, including vertices, is written to
file following the structure given by cdo commmand ‘griddes’

• filename (str) – Name of text file for the grid information. Only used if write_to_file
is True. If not provided, a default name will be used.

Returns lon_bnds, lat_bnds – Arrays of dimension [4, nlat, nlon] containing cell boundaries of
each gridcell in lons and lats

Return type arrays

rcat.utils.grids.fnRemapConOperator

rcat.utils.grids.fnRemapConOperator(rgrLonS, rgrLatS, rgrLonT, rgrLatT, rgrLonSB-
NDS=None, rgrLatSBNDS=None, rgrLonTBNDS=None,
rgrLatTBNDS=None)

File name: fnRemapConOperator Author: Andreas Prein E-mail: prein@ucar.edu Date created: 26.05.2017
Date last modified: 26.05.2017

Generates an opperator to coservatively remapp data from a source rectangular grid to an target rectangular grid.

Parameters

• rgrLonS,rgrLatS (arrays) – Source grid longitude and latitude values

• rgrLonT,rgrLatT (arrays) – Target grid longitude and latitude values

• rgrLonSBNDS,rgrLatSBNDS (arrays) – Source grid longitude and latitude grid
point boundaries (corners). These must be given in the structure (lat, lon, vertices) where
vertices are the four corners of each grid point. If not provided (default) then corners are
calculated using fnCellCorners.

• rgrLonTBNDS,rgrLatTBNDS (arrays) – Target grid longitude and latitude grid point
boundaries (corners). See above for more info.

Returns grConRemapOp – opperator that contains the grid cells and their wheights of the source
grid for each target grid cell

Return type dictionary

rcat.utils.grids.fnRemapCon

rcat.utils.grids.fnRemapCon(rgrLonS, rgrLatS, rgrLonT, rgrLatT, grOperator, rgrData)
File name: fnRemapCon Author: Andreas Prein E-mail: prein@ucar.edu Date created: 13.06.2017 Date last
modified: 13.06.2017

Uses the remap operator generated by the function fnRemapConOperator to remap data to a target grid conser-
vatively

Parameters

• rgrLonS,rgrLatS (arrays) – Source grid longitude and latitude values

• rgrLonT,rgrLatT (arrays) – Target grid longitude and latitude values

• grOperator (dictionary) – Remapping operator returned from fnRemapConOpera-
tor.

4.1. User API 51

mailto:prein@ucar.edu
mailto:prein@ucar.edu

RCAT, Release 1.0

• rgrData (3D/4D array) – Data to be regridded, structured as (time, lat, lon) or (time,
variables, lat, lon).

Returns rgrTarData – Remapped data matrix

Return type array

rcat.utils.grids.add_matrix_NaNs

rcat.utils.grids.add_matrix_NaNs(regridder)
Replace zero values of cells in the new grid that are outside the old grid’s domain with NaN’s.

Parameters regridder (Object from xESMF Regridder function) –

Returns Modified regridder where zero valued cells (outside source grid) has been replaced with
NaN’s.

Return type regridder

Config reader module

Creates and return a dictionary built from a config file.

rcat.utils.ini_reader.
get_config_dict(ini_file)

Create a dictionary from then input config file.

rcat.utils.ini_reader.get_config_dict

rcat.utils.ini_reader.get_config_dict(ini_file)
Create a dictionary from then input config file. PARAMETERS: config (.ini) file RETURNS : Dictionary

Polygons

Mask polygons

Routine for Masking Data with Polygons.

rcat.utils.polygons.polygons
rcat.utils.polygons.mask_region
rcat.utils.polygons.create_polygon
rcat.utils.polygons.plot_polygon
rcat.utils.polygons.topo_mask
rcat.utils.polygons.find_geo_indices

Draw polygon

Draw a simple polygon using matplotlib with mouse event handling.

52 Chapter 4. API-reference

RCAT, Release 1.0

rcat.utils.draw_polygon.Canvas.
set_location(event)
rcat.utils.draw_polygon.Canvas.
update_path(event)

rcat.utils.draw_polygon.Canvas.set_location

Canvas.set_location(event)

rcat.utils.draw_polygon.Canvas.update_path

Canvas.update_path(event)

4.2 Internal API

4.2.1 RCAT Plots

Module script for plotting

rcat.runtime.RCAT_plots.plot_main
rcat.runtime.RCAT_plots.get_clevs
rcat.runtime.RCAT_plots.map_season
rcat.runtime.RCAT_plots.map_ann_cycle
rcat.runtime.RCAT_plots.
line_ann_cycle
rcat.runtime.RCAT_plots.map_pctls
rcat.runtime.RCAT_plots.
map_diurnal_cycle
rcat.runtime.RCAT_plots.
line_diurnal_cycle
rcat.runtime.RCAT_plots.pdf_plot
rcat.runtime.RCAT_plots.map_asop
rcat.runtime.RCAT_plots.line_asop

4.2.2 RCAT Statistics

Functions controlling statistical calculations

rcat.runtime.RCAT_stats.
default_stats_config(stats)

The function returns a dictionary with default statistics
configurations for a selection of statistics given by input
stats.

rcat.runtime.RCAT_stats.
mod_stats_config(. . .)

Get the configuration for the input statistics ‘re-
quested_stats’.

rcat.runtime.RCAT_stats.
calc_statistics(. . .)

Calculate statistics ‘stat’ according to configuration in
‘stat_config’.

4.2. Internal API 53

RCAT, Release 1.0

rcat.runtime.RCAT_stats.default_stats_config

rcat.runtime.RCAT_stats.default_stats_config(stats)
The function returns a dictionary with default statistics configurations for a selection of statistics given by input
stats.

rcat.runtime.RCAT_stats.mod_stats_config

rcat.runtime.RCAT_stats.mod_stats_config(requested_stats)
Get the configuration for the input statistics ‘requested_stats’. The returned configuration is a dictionary.

rcat.runtime.RCAT_stats.calc_statistics

rcat.runtime.RCAT_stats.calc_statistics(data, var, stat, stat_config)
Calculate statistics ‘stat’ according to configuration in ‘stat_config’. This function calls the respective stat
function (defined in _stats).

Statistical functions

rcat.runtime.RCAT_stats.moments(data,
var, . . .)

Calculate standard moment statistics: avg, median, std,
max/min

rcat.runtime.RCAT_stats.
seasonal_cycle(data, . . .)

Calculate seasonal cycle

rcat.runtime.RCAT_stats.
annual_cycle(data, . . .)

Calculate annual cycle

rcat.runtime.RCAT_stats.
diurnal_cycle(data, . . .)

Calculate diurnal cycle

rcat.runtime.RCAT_stats.
dcycle_harmonic_fit(. . .)

Calculate diurnal cycle with Harmonic oscillation fit

rcat.runtime.RCAT_stats.
percentile(data, . . .)

Calculate percentiles

rcat.runtime.RCAT_stats.
freq_int_dist(data, . . .)

Calculate frequency intensity distributions

rcat.runtime.RCAT_stats.asop(data, var,
. . .)

Calculate ASoP components for precipitation

rcat.runtime.RCAT_stats.Rxx(data, var, stat,
. . .)

Count of any time units (days, hours, etc) when precip-
itation xx mm.

rcat.runtime.RCAT_stats.moments

rcat.runtime.RCAT_stats.moments(data, var, stat, stat_config)
Calculate standard moment statistics: avg, median, std, max/min

rcat.runtime.RCAT_stats.seasonal_cycle

rcat.runtime.RCAT_stats.seasonal_cycle(data, var, stat, stat_config)
Calculate seasonal cycle

54 Chapter 4. API-reference

RCAT, Release 1.0

rcat.runtime.RCAT_stats.annual_cycle

rcat.runtime.RCAT_stats.annual_cycle(data, var, stat, stat_config)
Calculate annual cycle

rcat.runtime.RCAT_stats.diurnal_cycle

rcat.runtime.RCAT_stats.diurnal_cycle(data, var, stat, stat_config)
Calculate diurnal cycle

rcat.runtime.RCAT_stats.dcycle_harmonic_fit

rcat.runtime.RCAT_stats.dcycle_harmonic_fit(data, var, stat, stat_config)
Calculate diurnal cycle with Harmonic oscillation fit

rcat.runtime.RCAT_stats.percentile

rcat.runtime.RCAT_stats.percentile(data, var, stat, stat_config)
Calculate percentiles

rcat.runtime.RCAT_stats.freq_int_dist

rcat.runtime.RCAT_stats.freq_int_dist(data, var, stat, stat_config)
Calculate frequency intensity distributions

rcat.runtime.RCAT_stats.asop

rcat.runtime.RCAT_stats.asop(data, var, stat, stat_config)
Calculate ASoP components for precipitation

rcat.runtime.RCAT_stats.Rxx

rcat.runtime.RCAT_stats.Rxx(data, var, stat, stat_config)
Count of any time units (days, hours, etc) when precipitation xx mm.

4.2. Internal API 55

RCAT, Release 1.0

56 Chapter 4. API-reference

CHAPTER 5

Release notes

v1.0.0 - First online collaborative version

57

RCAT, Release 1.0

58 Chapter 5. Release notes

Index

A
A_stat() (in module rcat.stats.sal), 43
add_matrix_NaNs() (in module rcat.utils.grids), 52
annual_cycle() (in module

rcat.runtime.RCAT_stats), 55
asop() (in module rcat.runtime.RCAT_stats), 55
asop() (in module rcat.stats.ASoP), 34
axes_settings() (in module rcat.plot.plots), 28

B
bins_calc() (in module rcat.stats.ASoP), 35
block_bootstr() (in module rcat.stats.bootstrap),

35

C
calc_statistics() (in module

rcat.runtime.RCAT_stats), 54
calc_vaisala() (in module rcat.utils.atmosphys), 48
calc_vertices() (in module rcat.utils.grids), 50
convolve_fft() (in module rcat.stats.convolve), 39
custom_legend() (in module rcat.plot.plots), 31

D
dcycle_harmonic_fit() (in module

rcat.runtime.RCAT_stats), 55
default_stats_config() (in module

rcat.runtime.RCAT_stats), 54
distfunc() (in module rcat.stats.sal), 44
diurnal_cycle() (in module

rcat.runtime.RCAT_stats), 55

E
ehi() (in module rcat.stats.climateindex), 37
extr_hotdays_calc() (in module

rcat.stats.climateindex), 36

F
fft_prep() (in module rcat.stats.convolve), 39
fig_grid_setup() (in module rcat.plot.plots), 27

figure_init() (in module rcat.plot.plots), 27
fnCellCorners() (in module rcat.utils.grids), 50
fnRemapCon() (in module rcat.utils.grids), 51
fnRemapConOperator() (in module

rcat.utils.grids), 51
fracday2datetime() (in module rcat.utils.file_io),

49
freq_int_dist() (in module

rcat.runtime.RCAT_stats), 55
freq_int_dist() (in module rcat.stats.pdf), 41

G
gen_clevels() (in module rcat.plot.plots), 31
get_config_dict() (in module

rcat.utils.ini_reader), 52
get_nrow_ncol() (in module rcat.plot.plots), 27
getcolormap() (in module rcat.plot.colors), 25
getDimensions() (in module rcat.utils.file_io), 49
getParams() (in module rcat.utils.file_io), 49
getsinglecolor() (in module rcat.plot.colors), 26

H
hotdays_calc() (in module rcat.stats.climateindex),

36

I
image_colorbar() (in module rcat.plot.plots), 33
image_grid_setup() (in module rcat.plot.plots), 27

K
kernel_gen() (in module rcat.stats.convolve), 39

L
L_stat() (in module rcat.stats.sal), 44

M
make_box_plot() (in module rcat.plot.plots), 30
make_line_plot() (in module rcat.plot.plots), 30
make_map_plot() (in module rcat.plot.plots), 32

59

RCAT, Release 1.0

make_raster_plot() (in module rcat.plot.plots), 29
make_scatter_plot() (in module rcat.plot.plots),

29
map_axes_settings() (in module rcat.plot.plots),

28
map_setup() (in module rcat.plot.plots), 31
mod_stats_config() (in module

rcat.runtime.RCAT_stats), 54
moments() (in module rcat.runtime.RCAT_stats), 54

N
ncdump() (in module rcat.utils.file_io), 48
norm_colors() (in module rcat.plot.colors), 26

O
openFile() (in module rcat.utils.file_io), 49

P
percentile() (in module rcat.runtime.RCAT_stats),

55
perkins_skill_score() (in module

rcat.stats.pdf), 42
plot_map() (in module rcat.plot.plots), 33
prob_of_exceed() (in module rcat.stats.pdf), 42

R
remove_large_objects() (in module

rcat.stats.sal), 44
rh2sh() (in module rcat.utils.atmosphys), 46
RRpX() (in module rcat.stats.climateindex), 37
RRtX() (in module rcat.stats.climateindex), 38
run_mean() (in module rcat.stats.arithmetics), 34
run_sal_analysis() (in module rcat.stats.sal), 45
Rxx() (in module rcat.runtime.RCAT_stats), 55
Rxx() (in module rcat.stats.climateindex), 37

S
S_stat() (in module rcat.stats.sal), 43
sal_calc() (in module rcat.stats.sal), 45
SDII() (in module rcat.stats.climateindex), 38
seasonal_cycle() (in module

rcat.runtime.RCAT_stats), 54
set_location() (rcat.utils.draw_polygon.Canvas

method), 53
sh2td() (in module rcat.utils.atmosphys), 47

T
td() (in module rcat.utils.atmosphys), 47
td2sh() (in module rcat.utils.atmosphys), 46
threshold() (in module rcat.stats.sal), 44
tropnights_calc() (in module

rcat.stats.climateindex), 36

U
update_path() (rcat.utils.draw_polygon.Canvas

method), 53
uv2wind() (in module rcat.utils.atmosphys), 47

W
wind2uv() (in module rcat.utils.atmosphys), 47
write2netcdf() (in module rcat.utils.file_io), 49
write_to_disk() (in module rcat.stats.sal), 45

60 Index

	Tutorials
	How-To Guides
	Development
	API-reference
	Release notes
	Index

